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Abstract

Properties of the spacéof generalized connections in the Ashtekar framework are investigated.
First a construction method for new connections is given. The new parallel transports differ from the
original ones only along paths that pass an initial segment of a fixed path. This is closely related to
a new notion of path independence. Although we do not restrict ourselves to the immersive smooth
or analytical case, any finite set of paths depends on a finite set of independent paths, a so-called
hyph. This generalizes the well-known directedness of the set of smooth webs and that of analytical
graphs. Due to these propositions, on the one hand, the projections4ranihe lattice gauge
theories are surjective and open. On the other hand, an induced Haar measure can be defined for
every compact structure group irrespective of the used smoothness category for the paths.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the recent approaches to the quantization of gauge theories, in particular of
gravity, is the investigation of generalized connections introduced by Ashtekar et al. in a
series of papers, see, e.fl--3]. Mathematically, there are two main ideas: First, every
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classical (i.e. smooth) connection is uniquely determined by its parallel transports. These
are certain elements of the structure group that are in a certain sense smoothly assigned
to each path in the (space-time) manifold and that respect the concatenation of paths.
Second, quantization here means path integral quantization. Thus, forget—as suggested
by the Wiener or Feynman path integral —the smoothness of the connections being the
configuration variables. Altogether, a generalized connection is simply defined to be a
homomorphism from the groupoid of paths to the structure group.

Atfirst glance this definition seemsto be very rigid. But, is there a canonical choice for the
groupoidP of paths? Do we want to restrict ourselves to piecewise analytic or immersive
smooth paths? When shall two paths be equivalent? There are lots of “optimal” choices
depending on the concrete problem being under consideration. For instance, for technical
reasons piecewise analyticity is beautiful. In this case it is, in particular, impossible that
two paths (maps from [0,1] to the manifold) have infinitely many intersection points
provided they do not coincide along a whole interval. However, since one of the most
important features of gravity is the diffeomorphism invariance, one should admit at least
smooth paths. Otherwise, a diffeomorphism will no longer be a mdp. i@n the other
hand, paths that are equal up to the parametrization, i.e., up to a map between their domains
[0,1], should be equivalent. But, which maps from [0,1] onto itself are reparametrizations?
As well, y o y~1 are said to be equal to the trivial path in the initial point of the path
This is suggested by the homomorphy propériyy o y 1) = ha(y)ha(y)~! = eg of
the parallel transports. What are the other purely algebraic relations sias to fulfill?

As just indicated, two different definitions are on the market for a couple of years.
Originally, Ashtekar and Lewandowski had used the piecewise analyfigditand later on,

Baez and Sawifb] extended their results to the smooth category. Recently, in another paper
[6] we considered a more general case. At the beginning, we only fixed the smoothness
categoryC”,r € NT U {00} U {w}, and decided whether we consider only piecewise
immersed paths or not. Furthermore, we proposed two definitions for the equivalence of
paths. The first one was —in a certain sense —the minimal one: it identifigs~ with

the trivial path as well as reparametrized path. The second one identifies in the immersive
case paths that are equal when parametrized w.r.t. the arc length. The main goal of our
paper is a preliminary discussion for which results are insensitive to the chosen smoothness
conditions and which are not.

Foremost, can an induced Haar measure be defined on the 4pafageneralized con-
nections in the general case? It is well known that this is indeed possible in the analytic
case using grapHg] and in the smooth case using wgbks What common ideas of these
cases can be reused for our problem? Looking at the definitipn,,) := Ii(r_np Ar and
Aweb := lim,, A, we see that the label sgtE'} and{w} of the projective limit are in both
cases notEnIy projective systems, but also directed systems. This means that, e.g., for every
two graphs there is a third graph such that every path in one of the first two graphs is a
product of paths (or their inverses) in the third graph. The analogous result holds for the
webs. In the analytical case this can be seen very e@gilyor the smooth one we refer
to the paper by Baez and Saws. In [6] we definedA in general byA, := lim Ar
whereas, of course, here the graphs are in the smoothness catégbinys definition has the
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drawback that the projective label ¢t} is no longer directed. But, nevertheless, note that
we have showf6] in the immersive smooth category than,, A andﬂ(oo) = limp Ar
<~ <~

are homeomorphic. Hence we can hope to find another appropriate label set for the case of
arbitrary smoothness that generalizes the notion of webs and that gives a definition of the
space of generalized connections which is equivalent to that using graphs.

In the first step we will investigate a condition for the independence of paths. When
can one assign parallel transports to paths independently? As we will see, a fifjtg set
of paths is already independent when every pathontains a poinv; such that one of
the subpaths of; starting inv; is non-equivalent to every subpath of thewith j < i.
Sets of paths fulfilling this condition will be called hyph. Obviously, the edges of a graph
are a hyph as well as the curves of a web. The crucial point is now: For every two hyphs
there is a hyph containing them. In other words, the set of hyphs is directed as the set of
graphs £ = w) and that of webgr = 00). This ensures the existence of an induced Haar
measure ind, for arbitraryr. Moreover, as a by-product we get an explicit construction
for connections that differ from a given one only along paths that are not independent of
an arbitrary, but fixed path. This immediately leads to the surjectivity of the projectiens
from the continuum to the lattice theory as well as that gfandrn, projecting to the webs
and hyphs, respectively. Furthermore, we prove thafs open. InSection 6we extend
the definition of the Ashtekar—Lewandowski measure to arbitrary smoothness categories.
Finally, we discuss in which cases the regular connections form a dense suﬂ@,&;t in

2. Notations

In this section we shall recall the basic definitions and notations introdudé&dl. iror
further, detailed information we refer the reader to that paper.

Let there be given a finite-dimensional, but at least two-dimensional man#o&hd
a (not necessarily compact) Lie gro@ Furthermore, we fix an € N U {oo} U {w}
and decide whether we work in the category of piecewise immersive maps or not. In the
following we will usually say simplyC” referring to these choices.

A path is a piecewis€”-map from [0,1] to the manifold/. A graph consists of finitely
many non-self-intersecting edges whose interiors are disjoint and contain no vertex. Paths
in graphs are called simple, and finite products of simple paths are called finite paths. Two
finite paths are said to be equivalent if they coincide up to pieceWiseparametrizations
or canceling or inserting retracings § 1. The set of (equivalence classes of) finite paths
is denoted byP. In what follows, we say simply “path” instead of “finite path” and “graph”
instead of “connected graph”.

A generalized connectioA € A is a homomorphisni ; : P — G. For every graph
with edges; € E(I") and vertices); € V(I") define the projections

ar: A —> Ap=GEID),
A = (hiler), ..., hilezer)))

to the lattice gauge theory. The topology.dris induced using all the - by the topology
of eachG#E("),
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3. A construction method for new connections

Note that in this section we mean by “path” usually not an equivalence class of paths,
but a “genuine” path.

The main goal of this section is to provide a method for constructing a connettioat
only minimally, but significantly differs from a giveA’. In detail, we want to define a new
connection whose parallel transport along a given patikes a given group element
but has the same parallel transports as the older one along the other paths. However, this is
obviously impossible, because the parallel transports have to obey the homomorphy rule.
How can we find the way out? The idea goes as follows: The only condition a connection
has to fulfill as a map frorf? to G is indeed the homomorphy property. Therefore, it should
be possible to leave the parallel transports at least along those paths untouched that do not
pass any subpath of our given pattSince the generalized connections need not fulfill any
continuity condition it does not matter “where” éthe modification should be placed, e.g.,
whether in the first half or the second or perhaps in the initial point. Since we are looking
for minimal variation we try to place the modification into one single point, say, the initial
pointe(0). This way all paths that do not pas®) can keep their parallel transports. This
is even true for those paths that though start (or end) in the p@ntbut start (or end) in
“another direction” ag(0) does. Hence, we are now left with those paths that pass an initial
path ofe. There we really have to change the parallel transports —we simply multiply the
corresponding factor that changes(e) to g from the left (or its inverse from the right) to
the transport of every path that starts (inverselyd.ddsing a certain decomposition of an
arbitrary path we get the desired construction method.

3.1. Hyphs

Before we state and prove the theorem we still need two crucial definitions and a decom-
position lemma.

Definition 3.1. Lety1, y» € P. We say thay; andy» have the same initial segment (shortly:
Y1 11 y2) iff there are non-trivial initial pathy; andy, of y1 andy», respectively, that
coincide up to the parametrization. We say analogously that the final segnpecbaficides
with the initial segment of, (shortly: y1 |1 y») iff yfl 11 y2. Now the definition of

y1 N y2andyy || y2 should be clear. Iff the corresponding relations are not fulfilled, we
write y1+¥y», etc.

y©T is the subpath of that corresponds tp|[;,1); ¥~ that fory|[o,.]. Analogously,
8*T is the subpath of starting inx supposed € im §. (See alsd6].)

Definition 3.2. Let y and$;,i € I, be the paths without self-intersections.is called
independentf D := {§;|i € I} iff

e thereis ar € [0, 1) with yf’+%?8}’(”’+ andyf’+%8}”(”’_ foralli e I or
e thereis ar e (0, 1] with yf~‘ﬁ83’(”’+ andy“‘%&}’(f)’* foralli e I.
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(If ¥ (r) should not be contained in itnthen the corresponding relatioﬁ”fﬁal?’(”*,
etc., is defined to be fulfilled.) The poipt(r) is then usually calledtee pointof y.
A finite set D = {§;} of paths without self-intersections is callégph or moderately
independeniff §; is independent ob; = {§;|j < i}.

Lemma 3.3. Lety € Pandx € M. Theny~1({x}) is a union of at most finitely many
isolated points and finitely many closed interval$dri].

Proof. Lety be (up to the parametrization) eqJdly; with simpley € P. Since anyy/
equals (up to the parametrization) a finite product of edges in graphs and of trivial paths,
this is also true foy itself. Obviously, we can even assume w.l.0.g. that [] y; with y;

being edges in graphs or trivial paths. (Thus, the manner of writing brackg{s/irdoes

not matter.)

The assertion of the lemma is obviously true for apypecause an edge in a graph has
just been defined as non-self-intersecting gﬁé‘i({x}) is in the case of a trivial path either
equal? or [0,1].

The case of a generglis now clear. a

Corollary 3.4. Letx € M be a point. Anyy € P can be written(up to parametrization
as a producf | y; with y; € P, such that

e inty,N{x}=0or
° inty,- = {x}.

Proof. Mark on [0,1] the end points of the closed intervals and the isolated points of
¥ ~1({x}) outside these intervals. We get finitely many intervals on [0,1]. Each one corre-
sponds to a subpath of y. Obviously,[ ] y; is the desired decomposition pf O

3.2. The construction
Now we state the construction method.

Construction 3.5. LetA € A ande € P be a path without self-intersections. Furthermore,
letg € G.
We now defing: : P — G.

e Lety € Pbe for the moment a path that does not contain the initial pgbjtof e as an
inner point. Explicitly we have ing N {¢(0)} = @. Define
ghi@ thi(»hzg " for y tteandy Ite,
ghz(@)hi(y) for y 11 eandy$e,
hi(y)hi(e)g™t for yHeandy |1 e,
hz(y) else

h(y) =
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e For every trivial pathy seth(y) = eg.

e Now, lety € P be an arbitrary path. Decompogeinto a finite produc{] j; due to
Corollary 3.4such that not any; contains the poing(0) in the interior, supposed is
not trivial. Here, set(y) = [[h(y)).

Theorem 3.6. The map: : P — G from Constructior8.5is for all A, e and g a homo-
morphism, i.e., corresponds to a connectitne A.

Here,Pis the set of alequivalence classes paths.

Proof.

1. his a well-defined mapping fror® to G.

Obviously,h(y") = h(y”) if y’ andy” coincide up to the parametrization. Thus, we
can drop the brackets in the following when we construct multiple products of paths.
Now, we showi (8’ 0 8”) = h(8' 08§ 08 10 8").

e}

Decomposé’, §” ands due toCorollary 3.4
8(0) # e(0),8(1) # ¢(0) ande(0) € imé. Then the decomposition &f o §”
is equal to(]‘[{,:_118{)y>;/’(]_[f;28;’) settingy,” := §),8{. The decomposition of

80808 108"is

I//
-1 " "
5[ Y« 1_[81
i=2

I'-1 1-1 2
Mo~ (m) W T
i=1 i=2 i=1—

1

with v, = 8,81, v 1= 8;8; 1 andy,’ := 87 %8]. (In the third product the index
decreases.)

A simple calculation shows that the definition above indeed yields the same
parallel transport for both paths.
The other cases can be proven completely analogously.

e We have aswelk(§’ 0§08 1) =h(8') = h(§ 05108 forall § ands.

¢ Since equivalent paths can be transformed into each other by a finite number of just
described transformations, we get the well-definedness.

2. his a homomorphism, i.eh corresponds to a generalized connection.

Let y and s be the two paths anfl[._,y; and ]_[{:18]- be their decompositions,

respectively, as above. Then the decomposition ofs equals(]_[{;lly,-)y*(]_[f-:zaj)
with v, := y;81 supposed

e y1(1) = 31(0) # e(0) or

e y(t) = ¢(0) for all r and so does; (7).

Otherwise the decomposition i§]/_;:)([T/_48;) and the homomorphy is trivial by
the above definition ot on general paths.

In the first case we still have to provey; o 81) = h(y;)h(81). But, this can be seen
quickly using the homomorphy property b and the definition above. a
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Remark.

e The theorem just proven is very well suited for the proof of the surjectivity and the
openness ofr : A — Ar (see below In a certain sense it is a generalization of
the proposition about the independence of loopfiB]. This says thaffor compact
Lie groups withexp(g) = G) the holonomies along independent loops are even inde-
pendent on the level of regular connections. For instance, a set of loops is independent
if each loop possesses a subpath called free segment that is not passed by any other
loop. The independence proposition could be proven modifying suitably a given con-
nection along those free segments, such that the resulting holonomy becomes a certain
fixed value. In our case we do no longer need the restriction to regular connections. We
can instead modify a connection “pointwise”, e.g., in the pei(@) in the construction
above

e In the compact case we will extensively use this theorem in another pgpghen we
prove a stratification theorem fod and.4/G.

e The theorem is valid not only for compact, but also for arbitrary structure gr@sips

3.3. Consequences

In this subsection we collect some immediate implications given by the construction
above.

First we consider the case of arbitrarily many pathe E that are, first, independent of
the corresponding remaining pathsAn\ {¢;} and, second, whose end points form a finite
set containing all the free points. Then the parallel transports can be chosen freely. More
precisely, we have the following

Proposition 3.7. LetA € A and | be a set. LeE := {e;|i € I} C P be a set of paths that
fulfill the following conditions:

. e; is a path without self-intersections for all i

. ejtte; forall i # j.

. eit¥e; forall i, j.

. The setV_ := {¢;(0)|i € I} of all initial points is finite
. V_nNinte; =@ foralli.

GO~ WNPFP

Finally, let there be a giveg; € Gforall i € I.
Then, there exists aA’ € A such that

o hjle) =g foralli e I.
e h;(y) = h;(y)forall y that do not have a subpaih that fulfillsy’ 11 ¢; ory’ |1 e;
for some € I. Especially, this holds for aly withimy N (Uje;inte;) = 0.

Proof. First we observe that it is impossible thatt 1 ¢; andy 11 e; fori # j, because
this would implye; 11 e;. Analogously,y |1 e; andy |1 e; is impossible fori # ;.
Now we definei : P — G as inConstruction 3.5with some modifications. Let € P.
We decomposg according to the (finite number of) passages of pointg.inThen we set
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for every such subpath (again denotedA)y

gihz(e) thi()hzegrt 3y teanddjiy 1 e,

h) gihi(e) thz(y) if 3i 1y 11 e;andvj : yHe;,
V)= L '
h/;(y)hg(ej)glfl if Vi : y¥te;and3j iy L1 ej,
hi(y) else

and extend the definition by homomorphy.

As in Theorem 3.@ne easily proves thétis a well-defined homomorphism using the
observation in the beginning of the present proof. Hence; 4 ; with someA’ € A.
Finally, one sees immediately from the definition/ofhat’ ;/(e;) = g; foralli € I and
h;(y) = h;(y) for all y with the properties above. a

The preceding proposition covers both the case of webs and of graphs:

Corollary 3.8. The assumptions of Propositi@i7 are fulfilled if E is the set of all edges
of a graph or the set of all curves of a web

Proof. For finite graphs the proof is trivial. Let, therefoi,be the set of all curves of a
web. By definition, the conditions (1), (4) and (5) are fulfilled as one can easily check using
the definition of a web (cfi5]).

To prove (2) we assume that 11 e for certain curves, e € E. Then we know
thate;(0) = e2(0) =: po, i.€.,e1 ande, belong to one and the same tassel. Suppose now
ime; # imey. Then there is w.lL.o.g. @ € M with p € ime1 \ imey. Then, by the
definition of a tassel, in every neighborhoodgf there is ap’ € imey \ im e2. But this
is a contradiction t@; 11 e2. Hence, iney = ime2. Thus, since the; are paths without
self-intersections, there is a homeomorphiem [0, 1] — [0, 1] with e2 = 3 o IT and
IT(0) = 0. Now, due to the consistent parametrization of curves of a tassel we know that
there is a positive constahtwith I7(r) = kt for all ¢ € [0, 1]. Because of7(1) = 1, we
getk = 1 andlT = id. Thus,es = eq.

Finally, condition (3) is fulfilled. In fact, le¢; 1| ¢;. Then we have; (0) = ¢;(1). This
is obviously impossible by the definition of tassels and webs. a

From the proof we get immediately
Corollary 3.9. The curves of a web form a hyph
Proof. The free point of a curve in the web is simply its initial point(0). |

Now, we come to the case of arbitrary independent paths leading to the hyphs themselves.
Proposition 3.10. LetA € .AandC C P be a set of paths without self-intersections. Now,

lete € Pbe apath without self-intersections agict G be arbitrary. Furthermore, suppose
that e is independent of.C
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Then there is al’ € A such that

° hA,(e) =g,
e hz(c)="hz()forallceC.

Proof. Due to the independenceofv.r.t. C, we havee ~ ¢~ o e for somer € [0, 1],
such that, w.l.o.g.¢™ := ¢“7 is a non-trivial path such that for all subpattisof all the
c € C we haveet#¢’ ande™ ¢, (If T = 0 we defineck™™ to be the trivial path and,
analogouslye™™ for r = 1.) Analogously tdProposition 3.@bove there is now ad’ € A
such that withe™ ;= e™~

o hi(e™) = (hie ) g;
o n(c)=nhz(c)forallc;
o hj(e7)=hj(e).
The lastline follows, becausgeés a path without self-intersections, i.e., there cannot exist a
subpathe’ of e~ thatist1 or |1 toe™. Finally, we haver ;. (e)=h 3. (e )h z(eT)=g. O

Corollary 3.11. Let A € A be a generalized connection and= {eq, ... , ey} C P be
a hyph. Furthermore, leg; € G,i = 1,...,Y be arbitrary. Then there is a connection
A’ € Asuch thath 3 (e;) = g; for alli.

Proof. Use inductively the preceding proposition. L&§ := A. Then for alli choose an
A; such thath/;l,(ei) = g andhAi(ej) = hj_,(ej) for all j < i using the assumed
independence of; w.r.t. {¢;|j < i}. Finally, setA’ := Ay. A’ has now the desired
property. O

3.4. Surjectivity

Proposition 3.12.

nr : A— Ap is surjective for all graphg.
my - A— Ay is surjective for all websy.
m, . A — A, is surjective for all hyphs.

7, is simply the mapt — (hi(er),... hjey)) € GY wheree; are the paths in.

For Lie groups withexp(g) = G the surjectivity ofr can also be proven analytically
showing that evem |4 : A — A is surjective. In the case of webs one additionally
needs compactness and semi-simplicitsoBut, the proof given here has the advantage
that itis completely algebraic and needs no additional assumptiorG.ftoreover, it uses
the very constructive proposition just proved and is valid also for hyphs

Proof. Let(g1, ..., gser)) € GEU7) be given. Now letd € A be the trivial connection,
i.e.,h;(y) = ec for all y € P. By Proposition 3.7andCorollary 3.8there is am’ € A
with h 5, (e;) = g; foralli =1, ... ,#E(I).

The proof in the case of webs is completely analogous, the proof for hyphs uses
Corollary 3.11 O
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3.5. Definition ofA using hyphs

In another papel6] we proved that in the smooth case for a compact and semi-simple
structure groufss the spacesi(oo,ﬂ and.Awep Of generalized connections used here and
by Baez and Sawifb], respectively, are in fact homeomorphic. Now, we will translate that
proof to the case of hyphs.

First, we define a partial ordering on the set of hyphs«x v; iff every e € v1 equals up
to the parametrization a finite product of paths4rand their inverses. Then we can define
A, := Hom(P,, G) (P, being the subgroupoid ¢ generated by) and

7711))12 . ~A_v2 - Avly
h = hlp,
for v1 < v. We topologizeA, identifying it with G™, Obyiouslynfjf is always continu-
ous, surjective and open. So we can defitigpn := lim, A, as the space of generalized
connections with the canonical projections -

Ty - Ahyph - »/Ivv
(hu’)u’ = hv-
Using the surjectivity ofr, we get
Proposition 3.13. Anyph and.A are homeomorphic in every smoothness category.
The proof is almost literally the same as fdiyep and A+ in [6] and is therefore
dropped here.
4. Directedness of the set of hyphs
In this section we will prove the following
Theorem 4.1. The set of all hyphs is directed
This assertion follows immediately from the more general
Proposition 4.2. LetC C P be a finite set of paths without self-intersections. Then there
is a hyphv, such that every € C equals up to the parametrization a finite product of paths
(and their inversesin v.
Consequently, for no € C there is a path occurring twice in the product far ¢
We will prove this theorem using induction on the number of patl@.iti a pathc € C

would be independent of the compleméht {c}, there will be no problems. Therefore, we
first consider the other case.
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4.1. Non-independent paths

In the following we often decompose paths without self-intersections according to a finite
set P of points in the manifold. This means, given some pathve construct non-trivial
subpathg; such that every; starts and ends iR or e¢(0) or e(1). We obviously need only
finitely manye; and gete ~ [] e;.

Lemma4.3. Lete andc;, j € J, be finitely many paths without self-intersections, such
that e is not independent 6f := {c¢;|j € J}.

Thenthere are; € [0,1],i =0,..., I, withtg = 0andr; = 1 such that the following
holds: After decomposing every e andnto a product of edgeﬁ[{;(}ei and][ [ c;, respec-
tively, according to the sdk(t;)} for everyi = 0,...,I — 1, one of the following two
assertions is true

l.egMc,=e ~c,ande t]c, = e ~ (c,’c)_l;
2. e ltc, = () t~c ande L] ¢, = (e) 1~ (L

Note that here the--sign indicates that, e.qg., in the first cageandc) are even equal up
to the parametrization.

Proof. (1) Letl; 1 ;, t € [0, 1], contain exactly itself and those’ € (z, 1] for that the
subpath ok from 7 to ¢’ is up to the parametrization equal to some subpaity of cj‘l.
By assumption for alt € [0, 1) there is aj with I  ; # {t}.

Analogously,/; — ;, T € [0, 1], contains exactly itself and those’ € [0, 7) for that
the subpath o# from 7’ to 7 is up to the parametrization equal to some subpaidy @fr
cjfl. Again, by assumption for al € (0, 1] there is aj with I, _ ; # {t}.

Furthermore/; + ; is everytime connected.

Now, define

It = ﬂ I+,

jelJ
I+ j#{t}

as well aslp — := {0} and /1 + = {1}.

What is the interpretation of such dn.? I; 4, e.g., is that interval in [0,1] starting in
t such that every subpath of (or cj‘l), that starts ire(t) ase does, is even equal (up to
the parametrization) to this subpath oht least frome(z) to e(z’) for everyt’ € I; 1.
However, note thaf; + need not be a closed interval. Observe that is in each case
(except forlp,— and/1 1) an interval that containg} as a proper subset.

(2) Now, we construct a sequen¢e) of numbers starting withg := 0 as follows for
alli > 0:

1. 74+ '=suply +.

2. tip1i=sup{r € [ti+, Uy + N I - # O}
3. tj+1,— is some number with
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® Ti+ =Tyl — = Titl,

® Tyl €1lg

o Iy NIy, —# 7.
4. Ti4(1/2) is some number id;, N Iy, _ .
5. If t;+1 = 1 then stop the procedure.

Observe:

=

7,4+ > 1;, becausdy,  is a non-trivial interval.

2. Sincely; NIy, # @ (by definition ofr; ), the setof all numberswith I, NI, #
¢ andt > t; 1 is non-empty. Consequently, it has a supremum > 7 4.

3. By choice ofr;41 as such a supremum there isa> 7; y with 7’ € I, , _ and
Iy, + NI _ # @. Choose now; 1 := 1’

4. 1i4(1/2) exists obviously.

Thus, the construction above is possible.

Furthermore, we have < 1,11/ < 7j,4+ < Tiy1,— < Tiy1andt; < 1;41.

(3) Now, assume that there is Moe N with iy = 1. Then(t;); <y is @ strictly increasing
sequence with values in [Q), i.e.7; — t € (0, 1] fori — oo, and we have; < t for all
ieN.

Lett € I _ with ¢/ < 7. Then there is an € N with 7’ < 1, < 7. Now we have
I, + NI, _ # §, because, e.gr, is contained in this set. But, from this we get together
the step 2 of (2) above, that< t,,1. This is a contradiction t& > 7,,1. Consequently,
there is anV € Nwith ty = 1.

(4) Now, the desired parameter values ater; (12 andr; 1 _fori =0,... , N -1
as well asry . Divide the edges andc; according to the set of all thoge¢r ). We have (if
two subsequent verticegt ) are equal, we drop the correspondent (trivial) subpaths
andc’ ):

1Le e, =e~c ande 1 c, = e ~ (c,’c)fl;
2. eiva2) W1 ¢ = (eiva2) t~ ¢, and eiray2) L ¢ = (eiva2) t~ ()™
3 eiy1- 1= (eiyr) P~ and ejpa - L ¢f = (eip1 )"t~ ()

We only show the first item, the other two can be proven analogously.

Lete; 11 c;. Sincec; is a subpath of a;, we havel,, ; ; # {r;}. FromI; , ; 2
I, + 2 [1, tiy@/2] we get nowe; equals (up to the parametrization) a subpatle of
starting ine(z;). But, sincec; has no self-intersections and is divided according(t)
ande(z;1(1/2)) (and other vertices that are not contained irejjpwe havee; even equals
¢ up to the parametrization.

In the case; 1| ¢, we conclude analogously usiag 11t (c}()‘l. |

4.2. Proof of Propositior.2

Proof of Proposition 4.2.

o First of all we decompose al} according to the set := {¢;(0)}; U {¢;(1)}; of all end
points. Thus, we get a finite sét of paths without self-intersections, whereas every
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¢ € C equals up to the parametrization a finite product of patlksC’ and their inverses

and where no end point of a pathis contained in the interior of another pathdh.

Consequently, we can w.l.0.g. assume that ou€setthe proposition is of that type.

e Now, we considet; € C.

o Inthe case that; is already independent ¢f;|j > 1} we need not decompose;
we simply set; 1 := ¢; andl; := 1 for alli.

o In the other case we usemma 4.3and get certain pathg (w.l.o.g. such that; ~
e1 o ---oey) such that every; is a product of they, (and their inverses) and such
that theey, k € [1, I1], are independent of the remaining paths. Now, weggt= ¢
for all k € [1, I1]. Analogously, we define; ; for i > 1 being thai, that (or whose
inverse) is used at thi#h position in the product for;, after we cancelled al
occurring inc1, and denote the number of factors left by

(Examplecy = e1epes, c2 = eg Teaezes - andes = e, . Thenwe havéy = 3, I =
2,I3=0andc11 =e1,c12 =e2,c13=e3,c21 = egandcy 2 = es.)

Per constructionenay ; is independent ofc; |i > 1 orl # I’}. Note, moreover, that the
set of end points of the ; is again disjoint to the interiors of these paths. Finally, we set
C1 = {ciyli > 1}.

e Now, we decompose the pathg; € C1 (if I2 # 0).

We start withcy 1. If it is not independent of théc;; € C1|li > 2 orl # 1}, then
decompose it again byemma 4.3by certain independent patlas. We get as before
€21 ~ c2110---0c¢21,, and a certain sef>,; that collects all paths used for the
decomposition o€; ; with i > 2. But, note thaty; is notdecomposed far # 1 by that
procedure.

Afterwards, we decompose > (w.r.t. C2,1) and so on.

Summa summarum, we get paths ,,, with c2; ~ ]_[mlcz,;,m, and aseCs ;= Coy,
collecting all the paths that ; with i > 2 is decomposed into, but that are not used in
the decomposition of; ;. By the constructiongz; », is independent ofc; ;v v Il # 14
orm; # my} U Ca. !

¢ Inthe next step, we first collect all pathsdh that are used for the decompositioncgf
After renumbering these paths by, ... , c3,;; We can again apply the previous step.
e Inductively, we get an ordered set

C"={eN11 - NIy My s - 3 €200 -+ 5 €21 Mo 15 €L, -+ CL 13 }

of paths that is by construction moderately independent, consequently a hyph, and that
admits a factorization of every; € C into a product of paths i€* of the desired
type. O

4.3. Open problem

In contrast to the case of graphs or webs we need for the definition of the independence in
the case of hyphs an ordering among the paths collected in a hyph. Thus, it would be —at
least for technical reasons —desirable to solve the following open problem: Does there
exist for every given finite sef of paths a set of strongly independent paths, such that
every path inC is a product of paths it and their inverses? Here strongly independent
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means that every path if is independent of the remaining pathsin We indicate the
problems that arose when we tried to prove the following answers:

“Yas”

“NoO”

The induction used for the proof &froposition 4.Zannot be reused. The problem

is the following. Suppose we have decomposed the first path C w.r.t. the
remaining paths as above. Then we decompose (the subpaths of) the second path
c2in C w.r.t. the others. Now, itis possible that vertices used in this procedure for the
division of ¢z lie onc1 again. Thusg1 would now be divided once more —with the
effect that sometimes subpaths-gfare created that do not fulfill the independence
condition. (Remember that independence means existermeegfoint in a path

with the independence-of-germs condition above.) Hence, we have to divide the
respective path again. But, now we could end up in a never-ending procedure that
creates an infinite number of subpaths.

It would be enough to present one counterexample. But, up to now, none of the
examples we checked lead to a contradiction.

5. Opennessof wp

Proposition 5.1. 7 : A — A is open for all graphg™.

Proof. We have to show that (V) is open for all element® of a basis of4, i.e.,

wr(mw

‘1(W1) n... ‘1(W1)) is open for all graphg and all elementsV; of a basis of

Ap = G#E(” But, a baS|s hereof is given by all sets of the tyigr x - - x W, 4 ()
W|th openW, .. € G. Now we have

1 #E(IY)

UL USRI IR ﬂ et (Wi j)

i=1 ji=

(W.l.o.g. we assumed that none of theconsists of a single vertex.)
Let us therefore prove the openness of all sets of the type

J
e [ (Ve W)

j=1

with edges:; and operW; C G.

Let us denote the edges bfby e; and setE := {¢;} andC = {c;}.

(1) Suppose first there is ane E that is independent af . Then it is obviously inde-
pendent ofC U (E(I") \ {e}). We will show that

J J
or ﬂﬂ;l(Wj) = TTr\{e} mn’cjl(Wj) x G.

j=1
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c”  Trivial.

2" Let(g.8) € i) (N g M (W))) x G.

Hence, thereis aA € mJ’.:lnC;l(Wj)

with 7\ (¢} (A) = g. Due toProposition 3.1@here is and’ € A fulfilling
o hj(e;) =hi(e) foralle; £e,ie.,g = JTF\{_e}(A) = J'[r\{e}(A/);
ehy(cj)=hzcpforallj=1,...Jie,A en (W) forall j;
ohj(e)=g. B B B

With this we haver(A") = (r\()(A"), m(A) = (g, 8), i.e.

J
@ & enr |7 W)
j=1
(2) Successively applying the preceding step we get

J J
Tr ﬂn;jl(Wj) =7 mn;jl(Wj) x G".
j=1 j=1

Heren denotes the number of edgesf I" that are independent 6f. Iy denotes the graph
that arises fronT” by removing all such edges.

(3) Since every edgein Iy is not independent of, we can divideey and thec; € C
as inLemma 4.3and get pathsy 1,... , e1,, andcj g, ... s Cjm;- \We collect ther__ into
C1 C P. Sincee; are edges of one and the same grapffori > 1) is still notindependent
of C1. We again useemma 4.3now for decomposingy and the paths ig’;. We get paths
€21, ...,e2,,andaC, C P. Successively, we decomposealandC;_1 gettingey x;, and
¢; € C' € P, such that for every andk; one of the following two assertions is true:

Loeiy M =ein~c andey Mo = e~ (cl’)_l;
2. e Vg = (eig) t~ e and e L g = (eig) Tt~ (e)7h
To reduce the technical efforts we first invert alk, that fulfill the second assertion. Af-
terwards, we invert; if it is equivalent to ar(el-,kl.)‘l. This is possible, because there is at
most one such edge .

It is clear, that; x, span a grapii™” > I, and we know from the construction that no
intc; contains a vertex of . Furthermore, every; is equivalent to a finite product ef
(or its inverse). The factors used for (again denoted by; ;) span a graph;, as well.

Thus, we haver;, = nﬁo’np andncjl = n;jl(ngj)‘l.

Finally, (nccj)‘l(Wj) is open inG™/ by continuity, i.e., a union of sets of the typg 1 x
X Wi, Thus,npo(ﬂ]J.zlnc—jl(Wj)) is the union of sets of the type,’?o/np/(mjf.zl ﬂZLl
7o (Win)).

(4) Due to the openness o:ffo/ (see[6]) it is sufficient to prove the openness of
7 (Nf_ym 1 (Wh)) whenever the following holds:

1. I'"is agraph and”’ = {¢;} is a finite set of paths without self-intersections;
2. intg NV =9;
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3. (e 11 a = e ~ ¢;) andet¢; for all / and for every edge of the graphl™’;
4. W; C Gis open for alll.
We will prove for non-empty left-hand side

L
T (mﬂgl(W1)> = xqeer | [) W . 1)

=1 c1€Cer)

whereC(ex) € C’ contains exactly thosg € C’ that are (up to the parametrization) equal
to ¢;. Since the right-hand side is obviously open, the openness is pro{ensf
“C” Letg e (N t(Wy), e, thereis aml € A with 7, (A) = g for all
k andz,, (A) € W, for all ¢; € C'. From this followsg, € W; for all
1 € Clex) and s0g € X ce(r)(Neecen WD) )
“D"  Let g € Xe () (Neecie) Wi). Choose amg € A with 7, (Ag) € W, for all
c¢;. By assumption every; is independent of’ \ (U, C(ey)) and so by
Proposition 3.1@here exists art € A such that
o1, (A) = g for all k,
o7, (A) = T, (Ao) for all ¢; that are not equal (up to the parametrization)
to ane.
Thus, we haver,, (A) € W, forall ¢; € C(e;). Consequentlyg € JT['/(ﬂlel
(WD) O

6. Induced Haar measure

In this section we will show that thanks to the directedness of the set of hyphs an induced
Haar measure can be defined with an arbitrary smoothness assumption for the paths. Our
definition covers that of Ashtekar and LewandowgKifor graphs in the analytic category
as well as that of Baez and SawB] for webs in the smooth category.

Throughout this sectiort; is acompactLie group.

6.1. Cylindrical functions

In this subsection we will investigate the algebra of continuous functiond.dartic-
ularly nice is the dense subalgebra of the so-called cylindrical funcfiy8% These are
functions depending only on the parallel transports along a finite number of paths.

Definition 6.1. Afunction f € C(A) is called agenuine cylindrical functioon A iff there
is a graph/” and a continuous functiofir € C(Ar) with f = fr o . The set of all
genuine cylindrical functions is denoted by gii).

Obviously, Cy}(A) is #-invariant. But, since for two finite graphs there need not exist a
third one containing both, the sum as well as the product of two cylindrical functions is
no longer a cylindrical function, in general. Therefore, we enlarge the definition above to
hyphs.
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Definition 6.2. A function f € C(A) is calledcylindrical functionon A iff there is a hyph
v and a continuous functioff, € C(A,) with f = f, o m,. The set of all cylindrical
functions is denoted by Cgi).

Lemma6.3. Cyl(A) is a normedk-algebra containingCyly(A).

Proof. Cyl(A) is obviously closed w.r.t. scalar multiplication and involution. It remains to
prove that it is closed w.r.t. addition and multiplication.

Let f' = f) omy andf” = f/, om,». By Theorem 4.1here is a hypl with v > v', v"
Thuswe havef’+ f" = f) o} omy+ fl, om0y = (f] 0m},+ fl,oml,)om, € CyI(A)
Analogously,f’” - f” € Cyl(A). O

Proposition 6.4. Cyl(A) is dense inC(A).

Proof. The assertion follows from the Stone—Weierstraf theorem:

o 1€ Cyl(A), whereas 1 A — Cis the function 14) := 1.

° CyI(A) separates the points k. (We prove even Cyl.A) separates the points of)
LetAl, As € Awith Ay # A,. Thus, there is a graph with (A1) # 71 (A>). Since
Ar = G*™U") is a manifold, hence completely regular, the continuous functionden
separate the points of;- [9]. This means there is afy € C(Ar) with fr (71 (A1) #
Sfr(mr(A2)). B B B

Due to fr o np € Cyl(A), Cyl(A) separates the points gf. a

6.2. The induced Haar measure gh

According to the Riesz—Markow theorem measures on a compact Hausdorff space are
in one-to-one correspondence to linear, continuous, positive functionals on the functional
algebra over that space. We get

Proposition 6.5. For every linear, continuous, positive functional F o1 A) there is a
unigue regular Borel measuge on A, such that

F: CAH — C,
f = [1f due

Due to the denseness of CH) in C (A), itis sufficient to define an appropriate functional
on Cyl(A) and to extend this continuously to a functional @aA). One possibility is to
replace the integration of functiorfs o 7, over.4 by the integration off, over A, = G*.
But, onG™ there is a “canonical” measure, the Haar measure. Hence, we defif# )cf.

Definition 6.6. Let f € Cyl(A). DefineFo(f) := [, fo dunaarif fyom, = f,and extend
Fp continuously to a functional on C (A).

Proposition 6.7. F : C(A) — Cis a well-defined, linear, continuous, positive functional
onC(A).



248 C. Fleischhack/Journal of Geometry and Physics 45 (2003) 231-251

Furthermore, there is a unique Borel measytg on A with F(f) = fjf deo for all
fecCA.

Definition 6.8. The measurg of the preceding proposition is callétiuced Haar mea-
sureor Ashtekar—Lewandowski measuane.A.

Pr oof.

e Fpis well defined.
Let f be cylindrical w.r.to’ andv”. Then f is again cylindrical w.r.tv, if v is some
hyph containingy” andv”. The existence of such ais guaranteed birheorem 4.1
Hence, it is sufficient to provﬁjv fo ditHaar = fju, fv ditHaarforallv > o',

Let nowv > v’. Then every patl; of v' can be written as a produﬂk[eﬁ}(i’i) of
paths inv (and their inverses). By the moderate independence of hyphs there is a path
ek i) for everyi, such thaeg ;) occurs exactly once in the decompositiorzoénd does
not occur in that ok}, with i’ < i. Now we have# := #v andn’ := #v’)

/, Sfo d,lLHaar
Ay

= /(; fo(g1, ..., gn) ditHaar

= +1 £1
B /G T Hgf(klvlf e l_[gj(k,zun’) l—[ ditHaar
ky Ky

(fv = fv o7} and decomposition af,)

Z/G"'/va’("'g}[%l)“' ,-~-,"'gljgzn/)"')dMHaanl"'dMHaann

(the dotsin - - gi, - - - denote always a product gf-* with

j# K foralll’ > 1)
= / . / fr(gl, ..., 8n) dMHaar,l ce dMHaar,n’
G G

(translation and inversion invarianceormalization of the Haar measure

2/_ S dithHaar
Ay

e Fp is continuous due toFo(f)| < |l full = I fIl. The last equality follows from the
surjectivity ofr,, seeProposition 3.12

Fy is obviously linear and positive.

Hence,F is a well-defined, linear, continuous, positive functionak®).

Due to the Riesz—Markow theorem there is a unique Borel measgwe. A with F(f) =
J1f duo.

e F is strictly positive.
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Let f € C(A), f #0,andk := f*f € C(A). ThenU := k~1((3|Ik|l, 00)) is open
and non-empty. Thus, there is a hyphand an open, non-empty, with 7, 1(U,) € U.
Now we use the fact that every open non-empty subset of a compact Lie group has
non-vanishing Haar measure. (In fact, 1etC G be open, non-empty. TheiVglg €
G} is a covering ofG. SinceG is compact, there are only finitely magy, such that
'_,Va = G. Due to the translation invariance of the Haar measure we have =
(1/n) > u(Vg) > (1/n)u(G) > 0.) Consequently, we have

F(f*f) = /_kduoz - / 1l dio
A U

1 1 1
= z”k”/ L 1dMO=§||k||/ 1dMHaar=§||k||MHaar(Uv) >0. O
Ty~ (Uy) Uy

7. Discussion

Inthis paper we investigated for some examples how the theory of generalized connections
depends on the chosen smoothness category for the paths used in the construttitimeof
most important theorem yields that in every case an induced Haar measure can be defined.
But, there are some problems that depend very crucially on the smoothness of the paths. So
let us resume the discussion of the beginning of this paper: What could be a good choice of
smoothness conditions?

One decisive point is the denseness of the classical (smooth) connections in the space
Ay In the case of compact structure groupshe denseness has been proven for the
immersive smootii5,10] and piecewise analytic categdiyl]. However, in the first case
[5] the spacedyep was defined not by(_lira;)/iw, but by I(imv/iw where A,, (being a Lie

subgroup of**) denotes the image of the spadeof regular connections under the map
Ty = hey X -+ X hey,. Thus, the denseness follows immediately by the directedness of
the set of webs (cfAppendix B. SupposedG is in addition semi-simple, Lewandowski
and Thiemanri10] proved that4,, = A, = G* which implies thatA is also dense

in our/i(oo,ﬂ. Up to now, we do not know whether this is true for arbitrary Lie groups.
However, A4 is definitelynotdense in the spacé(,) for non-immersed paths. Let, e.g.be

an immersed path without self-intersections ai¢t) := y (t2). Theny’ is not equivalent
toy (cf.[6]) and not animmersion. But, obviously (A) = &, (A) forall A € A. Consider
now two elementg, ¢’ € G and corresponding disjoint open neighborhobds/’ C G.

We see thab := {y, y'} isahyph and s *(U) ﬁnVil(U’) = ;7Y (U x U') is non-empty
and open, but contains no regukr So.A is not dense i4,,).

Since this is, in fact, very unsatisfactory, we should look for other possibilities for the
definition of the setP for non-immersive paths. The probably easiest way should be to
redefine the equivalence relation between paths. Why should non-self-intersecting paths
andy’ only be equivalent if they coincide up to a piecewetransformation? Perhaps
we should use a definition of the following kingk: ~ y/ iff ha(y) = ha(y’) for all
A € A—maybe at least provided ipn = imy’. This one is quite similar to that used
originally in [1,2]. On the one hand, we expect that all the constructions made in this
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paper and its campanidB] will still go through. But, on the other hand, even for that
definition we do not see that it saves the desired density property in more cases than described
above.

What other questions discussed in the Ashtekar framework could be touched by the choice
of P? One area we mentioned above — the diffeomorphism invariance of quantum gravity.
Here, obviously, we have to admit at least smooth paths. Another problem is quantum
geometry. For instance, the definition of the area opetdfoenforced the usage of at
most the analytic category. There one has to calculate sums over intersection points of spin
networks with surfaces. But, since there can exist infinitely many such points when working
with smooth paths, these sums can be infinite. This problem could be solved if there would
exist for every fixed surfacgin M a basis ofL,(A, 1), such that every base element has
only finitely many intersection points with. But this seems very unlikely.
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Appendix A. Additional resultsfor A/G

In this appendix we give three corollaries about assertions that can be proven not only
for A, but also for.4/G. For the definition of4/G and the used notation we refer[&].

CorollaryA.l. 7y : A/G — A/Gr andnr : A/G — A/G are surjective for all graphs
I.

Proof. Let [] € A/G; = Ar/Gr. FromProposition 3.1Zollows the existence of an
h € Awithtp(h) = hp. Then,([zr (W) € A/Gwith o (([xr (WD ) = [rr(W)] =
[Ar]. Analogouslyz([h]) = [hr] holds for [i] := 7 i,5(h) € A/G, WhereasrA/g :
A — A/Gis the canonical projection. O

Corollary A.2. nyp 1 A/)G — Ar/Gr = A/G is open for all graphg™.

Proof. This assertion comes from the surjectivity and the continuityrg)’g, from the

opennessat : A — Ar and ;.. ¢, as well as from the commutativity of the following
diagram:

z A/G /g
Tr er D
./_4—[‘ ﬁjr/ar -/—4[‘/?[‘

Every measure on a compadtinduces a measure of/G via
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Definition A.3. Let u be a Borel measure oA. o
Defineug(U) := M(ﬂj/lQ(U)) for all Borel sets/ on A/G.

Proposition A.4. 11z is a Borel measure onl/G for all Borel measureg. on A.

Especially, the induced Haar measure can be transferred ArtmA/G.

Appendix B. Densenesslemma for projective limits

LemmaB.1. Let A be asetX, be atopological space for eaeghe A and“ <" be a partial

ordering on A. Letr,? : X,, — X, for all a1 < az be a continuous and surjective map

with 742 o g2 = mae if a1 < a2 < az. Furthermore, letr, : limyeca X, — X, be the
<«

usual projection on the-component and X be some subsdirnfc4 X,,.
Then X is dense ilim ¢ X, if
<~

1. Aisdirected, i.e., for any twa', a” € A thereis aru € A withd’, a” < a, and
2. m,(X) is dense inX, forall a € A.

Proof. Let U C lim,X, be open and non-empty, i.€/, 2 mina—_l(vi) # ¢ with open
<« 1

Vi € X, and finitely manyy; € A. SinceA is directed, there is am € A with a; < a for
all i and thusU 2 77 (N; (g)~1(V;)) with non-emptyV := N (x4)~1(V;) € X,. V is
open becaussgl_ is continuous. Since,(X) is dense inX, for all a, there is amx € X
with 7, (x) € V and sar,, (x) € V; for all i, hencex € U. O
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