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Hyphs and the Ashtekar–Lewandowski measure
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Abstract

Properties of the spacēA of generalized connections in the Ashtekar framework are investigated.
First a construction method for new connections is given. The new parallel transports differ from the
original ones only along paths that pass an initial segment of a fixed path. This is closely related to
a new notion of path independence. Although we do not restrict ourselves to the immersive smooth
or analytical case, any finite set of paths depends on a finite set of independent paths, a so-called
hyph. This generalizes the well-known directedness of the set of smooth webs and that of analytical
graphs. Due to these propositions, on the one hand, the projections fromĀ to the lattice gauge
theories are surjective and open. On the other hand, an induced Haar measure can be defined for
every compact structure group irrespective of the used smoothness category for the paths.
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MSC:Primary: 81T13; Secondary: 28C20; 53C05; 58D20

PACS:11.15Tk

Subj. Class:Differential geometry; General relativity

Keywords:Graph; Path; Hyph; Ashtekar connections; Measure

1. Introduction

One of the recent approaches to the quantization of gauge theories, in particular of
gravity, is the investigation of generalized connections introduced by Ashtekar et al. in a
series of papers, see, e.g.,[1–3]. Mathematically, there are two main ideas: First, every
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classical (i.e. smooth) connection is uniquely determined by its parallel transports. These
are certain elements of the structure group that are in a certain sense smoothly assigned
to each path in the (space–time) manifold and that respect the concatenation of paths.
Second, quantization here means path integral quantization. Thus, forget — as suggested
by the Wiener or Feynman path integral — the smoothness of the connections being the
configuration variables. Altogether, a generalized connection is simply defined to be a
homomorphism from the groupoid of paths to the structure group.

At first glance this definition seems to be very rigid. But, is there a canonical choice for the
groupoidP of paths? Do we want to restrict ourselves to piecewise analytic or immersive
smooth paths? When shall two paths be equivalent? There are lots of “optimal” choices
depending on the concrete problem being under consideration. For instance, for technical
reasons piecewise analyticity is beautiful. In this case it is, in particular, impossible that
two paths (maps from [0,1] to the manifoldM) have infinitely many intersection points
provided they do not coincide along a whole interval. However, since one of the most
important features of gravity is the diffeomorphism invariance, one should admit at least
smooth paths. Otherwise, a diffeomorphism will no longer be a map inP. On the other
hand, paths that are equal up to the parametrization, i.e., up to a map between their domains
[0,1], should be equivalent. But, which maps from [0,1] onto itself are reparametrizations?
As well, γ ◦ γ−1 are said to be equal to the trivial path in the initial point of the pathγ .
This is suggested by the homomorphy propertyhA(γ ◦ γ−1) = hA(γ )hA(γ )−1 = eG of
the parallel transports. What are the other purely algebraic relations thathA has to fulfill?

As just indicated, two different definitions are on the market for a couple of years.
Originally, Ashtekar and Lewandowski had used the piecewise analyticity[2], and later on,
Baez and Sawin[5] extended their results to the smooth category. Recently, in another paper
[6] we considered a more general case. At the beginning, we only fixed the smoothness
categoryCr, r ∈ N

+ ∪ {∞} ∪ {ω}, and decided whether we consider only piecewise
immersed paths or not. Furthermore, we proposed two definitions for the equivalence of
paths. The first one was — in a certain sense — the minimal one: it identifiesγ ◦ γ−1 with
the trivial path as well as reparametrized path. The second one identifies in the immersive
case paths that are equal when parametrized w.r.t. the arc length. The main goal of our
paper is a preliminary discussion for which results are insensitive to the chosen smoothness
conditions and which are not.

Foremost, can an induced Haar measure be defined on the spaceĀ of generalized con-
nections in the general case? It is well known that this is indeed possible in the analytic
case using graphs[2] and in the smooth case using webs[5]. What common ideas of these
cases can be reused for our problem? Looking at the definitionĀ(r=ω) := limΓ← ĀΓ and

Āweb := limw← Āw we see that the label sets{Γ } and{w} of the projective limit are in both
cases not only projective systems, but also directed systems. This means that, e.g., for every
two graphs there is a third graph such that every path in one of the first two graphs is a
product of paths (or their inverses) in the third graph. The analogous result holds for the
webs. In the analytical case this can be seen very easily[2], for the smooth one we refer

to the paper by Baez and Sawin[5]. In [6] we definedĀ in general byĀ(r) := limΓ← ĀΓ

whereas, of course, here the graphs are in the smoothness categoryCr . This definition has the
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drawback that the projective label set{Γ } is no longer directed. But, nevertheless, note that

we have shown[6] in the immersive smooth category thatlimw← Āw andĀ(∞) = limΓ← ĀΓ

are homeomorphic. Hence we can hope to find another appropriate label set for the case of
arbitrary smoothness that generalizes the notion of webs and that gives a definition of the
space of generalized connections which is equivalent to that using graphs.

In the first step we will investigate a condition for the independence of paths. When
can one assign parallel transports to paths independently? As we will see, a finite set{γi}
of paths is already independent when every pathγi contains a pointvi such that one of
the subpaths ofγi starting invi is non-equivalent to every subpath of theγj with j < i.
Sets of paths fulfilling this condition will be called hyph. Obviously, the edges of a graph
are a hyph as well as the curves of a web. The crucial point is now: For every two hyphs
there is a hyph containing them. In other words, the set of hyphs is directed as the set of
graphs (r = ω) and that of webs(r = ∞). This ensures the existence of an induced Haar
measure inĀ(r) for arbitraryr. Moreover, as a by-product we get an explicit construction
for connections that differ from a given one only along paths that are not independent of
an arbitrary, but fixed path. This immediately leads to the surjectivity of the projectionsπΓ
from the continuum to the lattice theory as well as that ofπw andπv projecting to the webs
and hyphs, respectively. Furthermore, we prove thatπΓ is open. InSection 6we extend
the definition of the Ashtekar–Lewandowski measure to arbitrary smoothness categories.
Finally, we discuss in which cases the regular connections form a dense subset inĀ(r).

2. Notations

In this section we shall recall the basic definitions and notations introduced in[6]. For
further, detailed information we refer the reader to that paper.

Let there be given a finite-dimensional, but at least two-dimensional manifoldM and
a (not necessarily compact) Lie groupG. Furthermore, we fix anr ∈ N

+ ∪ {∞} ∪ {ω}
and decide whether we work in the category of piecewise immersive maps or not. In the
following we will usually say simplyCr referring to these choices.

A path is a piecewiseCr -map from [0,1] to the manifoldM. A graph consists of finitely
many non-self-intersecting edges whose interiors are disjoint and contain no vertex. Paths
in graphs are called simple, and finite products of simple paths are called finite paths. Two
finite paths are said to be equivalent if they coincide up to piecewiseCr -reparametrizations
or canceling or inserting retracingsδ ◦ δ−1. The set of (equivalence classes of) finite paths
is denoted byP. In what follows, we say simply “path” instead of “finite path” and “graph”
instead of “connected graph”.

A generalized connection̄A ∈ Ā is a homomorphismhĀ : P → G. For every graph
with edgesei ∈ E(Γ ) and verticesvj ∈ V(Γ ) define the projections

πΓ : Ā → ĀΓ ≡ G#E(Γ ),

Ā �→ (hĀ(e1), . . . , hĀ(e#E(Γ )))

to the lattice gauge theory. The topology onĀ is induced using all theπΓ by the topology
of eachG#E(Γ ).
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3. A construction method for new connections

Note that in this section we mean by “path” usually not an equivalence class of paths,
but a “genuine” path.

The main goal of this section is to provide a method for constructing a connectionĀ that
only minimally, but significantly differs from a given̄A′. In detail, we want to define a new
connection whose parallel transport along a given pathe takes a given group elementg,
but has the same parallel transports as the older one along the other paths. However, this is
obviously impossible, because the parallel transports have to obey the homomorphy rule.
How can we find the way out? The idea goes as follows: The only condition a connection
has to fulfill as a map fromP to G is indeed the homomorphy property. Therefore, it should
be possible to leave the parallel transports at least along those paths untouched that do not
pass any subpath of our given pathe. Since the generalized connections need not fulfill any
continuity condition it does not matter “where” ine the modification should be placed, e.g.,
whether in the first half or the second or perhaps in the initial point. Since we are looking
for minimal variation we try to place the modification into one single point, say, the initial
point e(0). This way all paths that do not passe(0) can keep their parallel transports. This
is even true for those paths that though start (or end) in the pointe(0), but start (or end) in
“another direction” ase(0) does. Hence, we are now left with those paths that pass an initial
path ofe. There we really have to change the parallel transports — we simply multiply the
corresponding factor that changeshĀ(e) to g from the left (or its inverse from the right) to
the transport of every path that starts (inversely) ase. Using a certain decomposition of an
arbitrary path we get the desired construction method.

3.1. Hyphs

Before we state and prove the theorem we still need two crucial definitions and a decom-
position lemma.

Definition 3.1. Letγ1, γ2 ∈ P. We say thatγ1 andγ2 have the same initial segment (shortly:
γ1 ↑↑ γ2) iff there are non-trivial initial pathsγ ′1 andγ ′2 of γ1 andγ2, respectively, that
coincide up to the parametrization. We say analogously that the final segment ofγ1 coincides
with the initial segment ofγ2 (shortly: γ1 ↓↑ γ2) iff γ−1

1 ↑↑ γ2. Now the definition of
γ1 ↑↓ γ2 andγ1 ↓↓ γ2 should be clear. Iff the corresponding relations are not fulfilled, we
write γ1 γ2, etc.

γ τ,+ is the subpath ofγ that corresponds toγ |[τ,1]; γ τ,− that forγ |[0,τ ] . Analogously,
δx,+ is the subpath ofδ starting inx supposedx ∈ im δ. (See also[6].)

Definition 3.2. Let γ and δi, i ∈ I , be the paths without self-intersections.γ is called
independentof D := {δi |i ∈ I } iff

• there is aτ ∈ [0,1) with γ τ,+ δ
γ (τ),+
i andγ τ,+ δ

γ (τ),−
i for all i ∈ I or

• there is aτ ∈ (0,1] with γ τ,− δ
γ (τ),+
i andγ τ,− δ

γ (τ),−
i for all i ∈ I .
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(If γ (τ) should not be contained in imδ then the corresponding relationγ τ,+ δ
γ (τ),+
i ,

etc., is defined to be fulfilled.) The pointγ (τ) is then usually calledfree pointof γ .
A finite setD = {δi} of paths without self-intersections is calledhyph or moderately
independentiff δi is independent ofDi = {δj |j < i}.

Lemma 3.3. Let γ ∈ P andx ∈ M. Thenγ−1({x}) is a union of at most finitely many
isolated points and finitely many closed intervals in[0,1].

Proof. Let γ be (up to the parametrization) equal
∏
γ ′i with simpleγ ′i ∈ P. Since anyγ ′i

equals (up to the parametrization) a finite product of edges in graphs and of trivial paths,
this is also true forγ itself. Obviously, we can even assume w.l.o.g. thatγ =∏ γi with γi
being edges in graphs or trivial paths. (Thus, the manner of writing brackets in

∏
γi does

not matter.)
The assertion of the lemma is obviously true for anyγi because an edge in a graph has

just been defined as non-self-intersecting andγ−1
i ({x}) is in the case of a trivial path either

equal∅ or [0,1].
The case of a generalγ is now clear. �

Corollary 3.4. Let x ∈ M be a point. Anyγ ∈ P can be written(up to parametrization)
as a product

∏
γi with γi ∈ P, such that

• int γi ∩ {x} = ∅ or
• int γi = {x}.

Proof. Mark on [0,1] the end points of the closed intervals and the isolated points of
γ−1({x}) outside these intervals. We get finitely many intervals on [0,1]. Each one corre-
sponds to a subpathγi of γ . Obviously,

∏
γi is the desired decomposition ofγ . �

3.2. The construction

Now we state the construction method.

Construction 3.5. Let Ā ∈ Ā ande ∈ P be a path without self-intersections. Furthermore,
let g ∈ G.

We now defineh : P→ G.

• Let γ ∈ P be for the moment a path that does not contain the initial pointe(0) of e as an
inner point. Explicitly we have intγ ∩ {e(0)} = ∅. Define

h(γ ) :=




ghĀ(e)
−1hĀ(γ )hĀ(e)g

−1 for γ ↑↑ e andγ ↓↑ e,
ghĀ(e)

−1hĀ(γ ) for γ ↑↑ e andγ e,

hĀ(γ )hĀ(e)g
−1 for γ e andγ ↓↑ e,

hĀ(γ ) else.
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• For every trivial pathγ seth(γ ) = eG.
• Now, let γ ∈ P be an arbitrary path. Decomposeγ into a finite product

∏
γi due to

Corollary 3.4such that not anyγi contains the pointe(0) in the interior, supposedγi is
not trivial. Here, seth(γ ) :=∏h(γi).

Theorem 3.6. The maph : P → G from Construction3.5 is for all Ā, e and g a homo-
morphism, i.e., corresponds to a connectionĀ′ ∈ Ā.

Here,P is the set of allequivalence classesof paths.

Proof.

1. h is a well-defined mapping fromP to G.
• Obviously,h(γ ′) = h(γ ′′) if γ ′ andγ ′′ coincide up to the parametrization. Thus, we

can drop the brackets in the following when we construct multiple products of paths.
• Now, we showh(δ′ ◦ δ′′) = h(δ′ ◦ δ ◦ δ−1 ◦ δ′′).

Decomposeδ′, δ′′ andδ due toCorollary 3.4.
◦ δ(0) �= e(0), δ(1) �= e(0) ande(0) ∈ im δ. Then the decomposition ofδ′ ◦ δ′′

is equal to(
∏I ′−1
i=1 δ

′
i )γ

′′′∗ (
∏I ′′
i=2δ

′′
i ) settingγ ′′′∗ := δ′

I ′δ
′′
1. The decomposition of

δ′ ◦ δ ◦ δ−1 ◦ δ′′ is


I ′−1∏
i=1

δ′i


 γ ′∗

(
I−1∏
i=2

δi

)
γ∗


 2∏
i=I−1

δ−1
i


 γ ′′∗


 I ′′∏
i=2

δ′′i




with γ ′∗ := δ′
I ′δ1, γ∗ := δI δ−1

I andγ ′′∗ := δ−1
1 δ

′′
1. (In the third product the index

decreases.)
A simple calculation shows that the definition above indeed yields the same

parallel transport for both paths.
◦ The other cases can be proven completely analogously.

• We have as wellh(δ′ ◦ δ ◦ δ−1) = h(δ′) = h(δ ◦ δ−1 ◦ δ′) for all δ′ andδ.
• Since equivalent paths can be transformed into each other by a finite number of just

described transformations, we get the well-definedness.
2. h is a homomorphism, i.e.,h corresponds to a generalized connection.

Let γ and δ be the two paths and
∏I
i=1γi and

∏J
j=1δj be their decompositions,

respectively, as above. Then the decomposition ofγ ◦ δ equals(
∏I−1
i=1γi)γ∗(

∏J
j=2δj )

with γ∗ := γI δ1 supposed
• γI (1) ≡ δ1(0) �= e(0) or
• γI (τ ) = e(0) for all τ and so doesδ1(τ ).
Otherwise the decomposition is(

∏I
i=1γi)(

∏J
j=1δj ) and the homomorphy is trivial by

the above definition ofh on general paths.
In the first case we still have to proveh(γI ◦ δ1) = h(γI )h(δ1). But, this can be seen
quickly using the homomorphy property ofhĀ and the definition above. �
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Remark.

• The theorem just proven is very well suited for the proof of the surjectivity and the
openness ofπΓ : Ā → ĀΓ (see below). In a certain sense it is a generalization of
the proposition about the independence of loops in[2,8]. This says that(for compact
Lie groups withexp(g) = G) the holonomies along independent loops are even inde-
pendent on the level of regular connections. For instance, a set of loops is independent
if each loop possesses a subpath called free segment that is not passed by any other
loop. The independence proposition could be proven modifying suitably a given con-
nection along those free segments, such that the resulting holonomy becomes a certain
fixed value. In our case we do no longer need the restriction to regular connections. We
can instead modify a connection “pointwise”, e.g., in the pointe(0) in the construction
above.

• In the compact case we will extensively use this theorem in another paper[7] when we
prove a stratification theorem for̄A andĀ/Ḡ.

• The theorem is valid not only for compact, but also for arbitrary structure groupsG.

3.3. Consequences

In this subsection we collect some immediate implications given by the construction
above.

First we consider the case of arbitrarily many pathsei ∈ E that are, first, independent of
the corresponding remaining paths inE \ {ei} and, second, whose end points form a finite
set containing all the free points. Then the parallel transports can be chosen freely. More
precisely, we have the following

Proposition 3.7. Let Ā ∈ Ā and I be a set. LetE := {ei |i ∈ I } ⊆ P be a set of paths that
fulfill the following conditions:

1. ei is a path without self-intersections for all i.
2. ei ej for all i �= j .
3. ei ej for all i, j .
4. The setV− := {ei(0)|i ∈ I } of all initial points is finite.
5. V− ∩ int ei = ∅ for all i .

Finally, let there be a givengi ∈ G for all i ∈ I .
Then, there exists an̄A′ ∈ Ā such that

• hĀ′(ei) = gi for all i ∈ I .
• hĀ′(γ ) = hĀ(γ ) for all γ that do not have a subpathγ ′ that fulfillsγ ′ ↑↑ ei or γ ′ ↓↑ ei

for somei ∈ I . Especially, this holds for allγ with im γ ∩ (∪i∈I int ei) = ∅.

Proof. First we observe that it is impossible thatγ ↑↑ ei andγ ↑↑ ej for i �= j , because
this would implyei ↑↑ ej . Analogously,γ ↓↑ ei andγ ↓↑ ej is impossible fori �= j .
Now we defineh : P → G as inConstruction 3.5with some modifications. Letγ ∈ P.
We decomposeγ according to the (finite number of) passages of points inV−. Then we set
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for every such subpath (again denoted byγ )

h(γ ) :=




gihĀ(ei)
−1hĀ(γ )hĀ(ej )g

−1
j if ∃i : γ ↑↑ ei and∃j : γ ↓↑ ej ,

gihĀ(ei)
−1hĀ(γ ) if ∃i : γ ↑↑ ei and∀j : γ ej ,

hĀ(γ )hĀ(ej )g
−1
j if ∀i : γ ei and∃j : γ ↓↑ ej ,

hĀ(γ ) else

and extend the definition by homomorphy.
As in Theorem 3.6one easily proves thath is a well-defined homomorphism using the

observation in the beginning of the present proof. Hence,h = hĀ′ with someĀ′ ∈ Ā.
Finally, one sees immediately from the definition ofh thathĀ′(ei) = gi for all i ∈ I and
hĀ′(γ ) = hĀ(γ ) for all γ with the properties above. �

The preceding proposition covers both the case of webs and of graphs:

Corollary 3.8. The assumptions of Proposition3.7are fulfilled if E is the set of all edges
of a graph or the set of all curves of a web.

Proof. For finite graphs the proof is trivial. Let, therefore,E be the set of all curves of a
web. By definition, the conditions (1), (4) and (5) are fulfilled as one can easily check using
the definition of a web (cf.[5]).

To prove (2) we assume thate1 ↑↑ e2 for certain curvese1, e2 ∈ E. Then we know
thate1(0) = e2(0) =: p0, i.e.,e1 ande2 belong to one and the same tassel. Suppose now
im e1 �= im e2. Then there is w.l.o.g. ap ∈ M with p ∈ im e1 \ im e2. Then, by the
definition of a tassel, in every neighborhood ofp0 there is ap′ ∈ im e1 \ im e2. But this
is a contradiction toe1 ↑↑ e2. Hence, ime1 = im e2. Thus, since theel are paths without
self-intersections, there is a homeomorphismΠ : [0,1] → [0,1] with e2 = e1 ◦ Π and
Π(0) = 0. Now, due to the consistent parametrization of curves of a tassel we know that
there is a positive constantk with Π(τ) = kτ for all τ ∈ [0,1]. Because ofΠ(1) = 1, we
getk = 1 andΠ = id. Thus,e2 = e1.

Finally, condition (3) is fulfilled. In fact, letei ↑↓ ej . Then we haveei(0) = ej (1). This
is obviously impossible by the definition of tassels and webs. �

From the proof we get immediately

Corollary 3.9. The curves of a web form a hyph.

Proof. The free point of a curvec in the web is simply its initial pointc(0). �

Now, we come to the case of arbitrary independent paths leading to the hyphs themselves.

Proposition 3.10. Let Ā ∈ Ā andC ⊆ P be a set of paths without self-intersections. Now,
lete ∈ P be a path without self-intersections andg ∈ G be arbitrary. Furthermore, suppose
that e is independent of C.
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Then there is an̄A′ ∈ Ā such that

• hĀ′(e) = g;
• hĀ′(c) = hĀ(c) for all c ∈ C.

Proof. Due to the independence ofe w.r.t.C, we havee ∼ eτ,− ◦ eτ,+ for someτ ∈ [0,1],
such that, w.l.o.g.,e+ := eτ,+ is a non-trivial path such that for all subpathsc′ of all the
c ∈ C we havee+ c′ ande+ c′. (If τ = 0 we definedeτ,− to be the trivial path and,
analogously,eτ,+ for τ = 1.) Analogously toProposition 3.7above there is now an̄A′ ∈ Ā
such that withe− := eτ,−
• hĀ′(e+) = (hĀ(e−))−1g;
• hĀ′(c) = hĀ(c) for all c;
• hĀ′(e−) = hĀ(e−).

The last line follows, becausee is a path without self-intersections, i.e., there cannot exist a
subpathe′ of e− that is↑↑ or ↓↑ to e+. Finally, we havehĀ′(e)=hĀ′(e−)hĀ′(e+)=g. �

Corollary 3.11. Let Ā ∈ Ā be a generalized connection andv = {e1, . . . , eY } ⊆ P be
a hyph. Furthermore, letgi ∈ G, i = 1, . . . , Y be arbitrary. Then there is a connection
Ā′ ∈ Ā such thathĀ′(ei) = gi for all i .

Proof. Use inductively the preceding proposition. LetĀ0 := Ā. Then for alli choose an
Āi such thathĀi (ei) = gi andhĀi (ej ) = hĀi−1

(ej ) for all j < i using the assumed

independence ofei w.r.t. {ej |j < i}. Finally, setĀ′ := ĀY . Ā′ has now the desired
property. �

3.4. Surjectivity

Proposition 3.12.

πΓ : Ā→ ĀΓ is surjective for all graphsΓ .
πw : Ā→ Āw is surjective for all websw.
πv : Ā→ Āv is surjective for all hyphsv.

πv is simply the map̄A �→ (hĀ(e1), . . . , hĀ(eY )) ∈ GY whereei are the paths inv.
For Lie groups withexp(g) = G the surjectivity ofπΓ can also be proven analytically

showing that evenπΓ |A : A → ĀΓ is surjective. In the case of webs one additionally
needs compactness and semi-simplicity ofG. But, the proof given here has the advantage
that it is completely algebraic and needs no additional assumptions forG. Moreover, it uses
the very constructive proposition just proved and is valid also for hyphs.

Proof. Let (g1, . . . , g#E(Γ )) ∈ G#E(Γ ) be given. Now letĀ ∈ Ā be the trivial connection,
i.e.,hĀ(γ ) = eG for all γ ∈ P. By Proposition 3.7andCorollary 3.8there is anĀ′ ∈ Ā
with hĀ′(ei) = gi for all i = 1, . . . ,#E(Γ ).

The proof in the case of webs is completely analogous, the proof for hyphs uses
Corollary 3.11. �
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3.5. Definition ofĀ using hyphs

In another paper[6] we proved that in the smooth case for a compact and semi-simple
structure groupG the spacesĀ(∞,+) andĀweb of generalized connections used here and
by Baez and Sawin[5], respectively, are in fact homeomorphic. Now, we will translate that
proof to the case of hyphs.

First, we define a partial ordering on the set of hyphs:v1 ≤ v2 iff every e ∈ v1 equals up
to the parametrization a finite product of paths inv2 and their inverses. Then we can define
Āv := Hom(Pv,G) (Pv being the subgroupoid ofP generated byv) and

π
v2
v1 : Āv2 → Āv1,

h �→ h|Pv1
for v1 ≤ v2. We topologizeĀv identifying it with G#v. Obviouslyπv2

v1 is always continu-
ous, surjective and open. So we can defineĀhyph := lim← vĀv as the space of generalized
connections with the canonical projections

πv : Āhyph → Āv,

(hv′)v′ �→ hv.

Using the surjectivity ofπv we get

Proposition 3.13. Āhyph andĀ are homeomorphic in every smoothness category.

The proof is almost literally the same as for̄Aweb andĀ(∞,+) in [6] and is therefore
dropped here.

4. Directedness of the set of hyphs

In this section we will prove the following

Theorem 4.1. The set of all hyphs is directed.

This assertion follows immediately from the more general

Proposition 4.2. LetC ⊆ P be a finite set of paths without self-intersections. Then there
is a hyphv, such that everyc ∈ C equals up to the parametrization a finite product of paths
(and their inverses) in v.

Consequently, for noc ∈ C there is a path occurring twice in the product for c.

We will prove this theorem using induction on the number of paths inC. If a pathc ∈ C
would be independent of the complementC \ {c}, there will be no problems. Therefore, we
first consider the other case.
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4.1. Non-independent paths

In the following we often decompose paths without self-intersections according to a finite
setP of points in the manifoldM. This means, given some pathe we construct non-trivial
subpathsei such that everyei starts and ends inP or e(0) or e(1). We obviously need only
finitely manyei and gete ∼∏ ei .
Lemma 4.3. Let e andcj , j ∈ J , be finitely many paths without self-intersections, such
that e is not independent ofC := {cj |j ∈ J }.

Then there areτi ∈ [0,1], i = 0, . . . , I , with τ0 = 0 andτI = 1 such that the following
holds: After decomposing every e andcj into a product of edges

∏I−1
i=0 ei and

∏
c′k, respec-

tively, according to the set{e(τi)} for everyi = 0, . . . , I − 1, one of the following two
assertions is true:

1. ei ↑↑ c′k ⇒ ei ∼ c′k and ei ↑↓ c′k ⇒ ei ∼ (c′k)−1;
2. ei ↓↑ c′k ⇒ (ei)

−1 ∼ c′k and ei ↓↓ c′k ⇒ (ei)
−1 ∼ (c′k)−1.

Note that here the∼-sign indicates that, e.g., in the first case,ei andc′k are even equal up
to the parametrization.

Proof. (1) Let Iτ,+,j , τ ∈ [0,1], contain exactlyτ itself and thoseτ ′ ∈ (τ,1] for that the
subpath ofe from τ to τ ′ is up to the parametrization equal to some subpath ofcj or c−1

j .
By assumption for allτ ∈ [0,1) there is aj with Iτ,+,j �= {τ }.

Analogously,Iτ,−,j , τ ∈ [0,1], contains exactlyτ itself and thoseτ ′ ∈ [0, τ ) for that
the subpath ofe from τ ′ to τ is up to the parametrization equal to some subpath ofcj or
c−1
j . Again, by assumption for allτ ∈ (0,1] there is aj with Iτ,−,j �= {τ }.

Furthermore,Iτ,±,j is everytime connected.
Now, define

Iτ,± :=
⋂
j∈J

Iτ,±,j �={τ }

Iτ,±,j ,

as well asI0,− := {0} andI1,+ := {1}.
What is the interpretation of such anIτ,±? Iτ,+, e.g., is that interval in [0,1] starting in

τ such that every subpath ofcj (or c−1
j ), that starts ine(τ ) ase does, is even equal (up to

the parametrization) to this subpath ofe at least frome(τ ) to e(τ ′) for everyτ ′ ∈ Iτ,±.
However, note thatIτ,± need not be a closed interval. Observe thatIτ,± is in each case
(except forI0,− andI1,+) an interval that contains{τ } as a proper subset.

(2) Now, we construct a sequence(τi) of numbers starting withτ0 := 0 as follows for
all i ≥ 0:

1. τi,+ := supIτi ,+.
2. τi+1 := sup{τ ∈ [τi,+,1]|Iτi ,+ ∩ Iτ,− �= ∅}.
3. τi+1,− is some number with
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• τi,+ ≤ τi+1,− ≤ τi+1;
• τi+1,− ∈ Iτi+1,−;
• Iτi ,+ ∩ Iτi+1,−,− �= ∅.

4. τi+(1/2) is some number inIτi ,+ ∩ Iτi+1,−,−.
5. If τi+1 = 1 then stop the procedure.

Observe:

1. τi,+ > τi , becauseIτi ,+ is a non-trivial interval.
2. SinceIτi ,+∩Iτi,+,− �= ∅ (by definition ofτi,+), the set of all numbersτ with Iτi ,+∩Iτ,− �=
∅ andτ ≥ τi,+ is non-empty. Consequently, it has a supremumτi+1 ≥ τi,+.

3. By choice ofτi+1 as such a supremum there is aτ ′ ≥ τi,+ with τ ′ ∈ Iτi+1,− and
Iτi ,+ ∩ Iτ ′,− �= ∅. Choose nowτi+1,− := τ ′.

4. τi+(1/2) exists obviously.

Thus, the construction above is possible.
Furthermore, we haveτi ≤ τi+(1/2) ≤ τi,+ ≤ τi+1,− ≤ τi+1 andτi < τi+1.
(3) Now, assume that there is noN ∈ N with τN = 1. Then(τi)i∈N is a strictly increasing

sequence with values in [0,1), i.e.τi → τ ∈ (0,1] for i →∞, and we haveτi < τ for all
i ∈ N.

Let τ ′ ∈ Iτ,− with τ ′ < τ . Then there is ann ∈ N with τ ′ ≤ τn < τ . Now we have
Iτn,+ ∩ Iτ,− �= ∅, because, e.g.,τn is contained in this set. But, from this we get together
the step 2 of (2) above, thatτ ≤ τn+1. This is a contradiction toτ > τn+1. Consequently,
there is anN ∈ N with τN = 1.

(4) Now, the desired parameter values areτi , τi+(1/2) andτi+1,− for i = 0, . . . , N − 1
as well asτN . Divide the edgese andcj according to the set of all thosee(τ...). We have (if
two subsequent verticese(τ...) are equal, we drop the correspondent (trivial) subpathse...
andc′...):

1. ei ↑↑ c′k ⇒ ei ∼ c′k and ei ↑↓ c′k ⇒ ei ∼ (c′k)−1;
2. ei+(1/2) ↓↑ c′k ⇒ (ei+(1/2))−1 ∼ c′k and ei+(1/2) ↓↓ c′k ⇒ (ei+(1/2))−1 ∼ (c′k)−1;
3. ei+1,− ↓↑ c′k ⇒ (ei+1,−)−1 ∼ c′k and ei+1,− ↓↓ c′k ⇒ (ei+1,−)−1 ∼ (c′k)−1.

We only show the first item, the other two can be proven analogously.
Let ei ↑↑ c′k. Sincec′k is a subpath of acj , we haveIτi ,+,j �= {τi}. From Iτi ,+,j ⊇

Iτi ,+ ⊇ [τi, τi+(1/2)] we get nowei equals (up to the parametrization) a subpath ofcj
starting ine(τi). But, sincecj has no self-intersections and is divided according toe(τi)
ande(τi+(1/2)) (and other vertices that are not contained in imei), we haveei even equals
c′k up to the parametrization.

In the caseei ↑↓ c′k we conclude analogously usingei ↑↑ (c′k)−1. �

4.2. Proof of Proposition4.2

Proof of Proposition 4.2.

• First of all we decompose allci according to the setV := {ci(0)}i ∪ {ci(1)}i of all end
points. Thus, we get a finite setC′ of paths without self-intersections, whereas every
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c ∈ C equals up to the parametrization a finite product of pathsc′ ∈ C′ and their inverses
and where no end point of a pathc′ is contained in the interior of another path inC′.
Consequently, we can w.l.o.g. assume that our setC in the proposition is of that type.

• Now, we considerc1 ∈ C.
◦ In the case thatc1 is already independent of{cj |j > 1} we need not decomposec1;

we simply setci,1 := ci andIi := 1 for all i.
◦ In the other case we useLemma 4.3and get certain pathsek (w.l.o.g. such thatc1 ∼
e1 ◦ · · · ◦ eI1) such that everycj is a product of theek (and their inverses) and such
that theek, k ∈ [1, I1], are independent of the remaining paths. Now, we setc1,k := ek
for all k ∈ [1, I1]. Analogously, we defineci,l for i > 1 being thatek that (or whose
inverse) is used at thelth position in the product forci , after we cancelled allek
occurring inc1, and denote the number of factors left byIi .

(Example: c1 = e1e2e3, c2 = e−1
1 e4e3e

−1
5 andc3 = e−1

2 . Then we haveI1 = 3, I2 =
2, I3 = 0 andc1,1 = e1, c1,2 = e2, c1,3 = e3, c2,1 = e4 andc2,2 = e5.)

Per constructionem,c1,l is independent of{ci,l′ |i > 1 or l �= l′}. Note, moreover, that the
set of end points of theci,l is again disjoint to the interiors of these paths. Finally, we set
C1 := {ci,l |i > 1}.

• Now, we decompose the pathsc2,l ∈ C1 (if I2 �= 0).
We start withc2,1. If it is not independent of the{ci,l ∈ C1|i > 2 or l �= 1}, then

decompose it again byLemma 4.3by certain independent pathse′k. We get as before
c2,1 ∼ c2,1,1 ◦ · · · ◦ c2,1,I2,1 and a certain setC2,1 that collects all paths used for the
decomposition ofci,l with i > 2. But, note thatc2,l is notdecomposed forl �= 1 by that
procedure.

Afterwards, we decomposec2,2 (w.r.t.C2,1) and so on.
Summa summarum, we get pathsc2,l,ml with c2,l ∼

∏
ml
c2,l,ml and a setC2 := C2,I2

collecting all the paths thatci,l with i > 2 is decomposed into, but that are not used in
the decomposition ofc2,l . By the construction,c2,l,ml is independent of{c2,l′,m′

l′
|l �= l′

orml �= m′l′ } ∪ C2.
• In the next step, we first collect all paths inC2 that are used for the decomposition ofc3.

After renumbering these paths byc3,1, . . . , c3,I3 we can again apply the previous step.
• Inductively, we get an ordered set

C∗ = {cN,1,1, . . . , cN,IN ,MN,IN ; . . . ; c2,1,1, . . . , c2,I2,M2,I2
; c1,1, . . . , c1,I1}

of paths that is by construction moderately independent, consequently a hyph, and that
admits a factorization of everyci ∈ C into a product of paths inC∗ of the desired
type. �

4.3. Open problem

In contrast to the case of graphs or webs we need for the definition of the independence in
the case of hyphs an ordering among the paths collected in a hyph. Thus, it would be — at
least for technical reasons — desirable to solve the following open problem: Does there
exist for every given finite setC of paths a setE of strongly independent paths, such that
every path inC is a product of paths inE and their inverses? Here strongly independent
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means that every path inE is independent of the remaining paths inE. We indicate the
problems that arose when we tried to prove the following answers:

“Yes” The induction used for the proof ofProposition 4.2cannot be reused. The problem
is the following. Suppose we have decomposed the first pathc1 in C w.r.t. the
remaining paths as above. Then we decompose (the subpaths of) the second path
c2 inC w.r.t. the others. Now, it is possible that vertices used in this procedure for the
division ofc2 lie onc1 again. Thus,c1 would now be divided once more — with the
effect that sometimes subpaths ofc1 are created that do not fulfill the independence
condition. (Remember that independence means existence ofonepoint in a path
with the independence-of-germs condition above.) Hence, we have to divide the
respective path again. But, now we could end up in a never-ending procedure that
creates an infinite number of subpaths.

“No” It would be enough to present one counterexample. But, up to now, none of the
examples we checked lead to a contradiction.

5. Openness of πΓ

Proposition 5.1. πΓ : Ā→ ĀΓ is open for all graphsΓ .

Proof. We have to show thatπΓ (V ) is open for all elementsV of a basis ofĀ, i.e.,
πΓ (π

−1
Γ ′1
(W1)∩ · · · ∩ π−1

Γ ′I
(WI )) is open for all graphsΓ ′i and all elementsWi of a basis of

ĀΓ ′i = G#E(Γ ′i ). But, a basis hereof is given by all sets of the typeWi,1 × · · · ×Wi,#E(Γ ′i )
with openWi,ni ⊆ G. Now we have

πΓ (π
−1
Γ ′1
(W1) ∩ · · · ∩ π−1

Γ ′I
(WI )) = πΓ


 I⋂
i=1

#E(Γ ′i )⋂
ji=1

π−1
ei,ji
(Wi,ji )


 .

(W.l.o.g. we assumed that none of theΓ ′i consists of a single vertex.)
Let us therefore prove the openness of all sets of the type

πΓ


 J⋂
j=1

π−1
cj
(Wj )




with edgescj and openWj ⊆ G.
Let us denote the edges ofΓ by ei and setE := {ei} andC := {cj }.
(1) Suppose first there is ane ∈ E that is independent ofC. Then it is obviously inde-

pendent ofC ∪ (E(Γ ) \ {e}). We will show that

πΓ


 J⋂
j=1

π−1
cj
(Wj )


 = πΓ \{e}


 J⋂
j=1

π−1
cj
(Wj )


×G.
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“⊆” Trivial.
“⊇” Let (%g, g) ∈ πΓ \{e}(∩Jj=1π

−1
cj
(Wj ))×G.

Hence, there is an̄A ∈ ∩Jj=1π
−1
cj
(Wj )

with πΓ \{e}(Ā) = %g. Due toProposition 3.10there is anĀ′ ∈ Ā fulfilling
• hĀ′(ei) = hĀ(ei) for all ei �= e, i.e., %g = πΓ \{e}(Ā) = πΓ \{e}(Ā′);
• hĀ′(cj ) = hĀ(cj ) for all j = 1, . . . , J , i.e.,Ā′ ∈ π−1

cj
(Wj ) for all j ;

• hĀ′(e) = g.
With this we haveπΓ (Ā′) = (πΓ \{e}(Ā′), πe(Ā′)) = (%g, g), i.e.

(%g, g) ∈ πΓ

 J⋂
j=1

π−1
cj
(Wj )


 .

(2) Successively applying the preceding step we get

πΓ


 J⋂
j=1

π−1
cj
(Wj )


 = πΓ0


 J⋂
j=1

π−1
cj
(Wj )


×Gn.

Heren denotes the number of edgese of Γ that are independent ofC. Γ0 denotes the graph
that arises fromΓ by removing all such edges.

(3) Since every edgee in Γ0 is not independent ofC, we can dividee1 and thecj ∈ C
as inLemma 4.3and get pathse1,1, . . . , e1,n1 andcj,1, . . . , cj,mj . We collect thec... into
C1 ⊆ P. Sinceei are edges of one and the same graph,ei (for i > 1) is still not independent
of C1. We again useLemma 4.3, now for decomposinge2 and the paths inC1. We get paths
e2,1, . . . , e2,n2 and aC2 ⊆ P. Successively, we decompose allei andCi−1 gettingek,ki and
c′l ∈ C′ ⊆ P, such that for everyi andki one of the following two assertions is true:

1. ei,ki ↑↑ c′l ⇒ ei,ki ∼ c′l and ei,ki ↑↓ c′l ⇒ ei,ki ∼ (c′l )−1;
2. ei,ki ↓↑ c′l ⇒ (ei,ki )

−1 ∼ c′l and ei,ki ↓↓ c′l ⇒ (ei,ki )
−1 ∼ (c′l )−1.

To reduce the technical efforts we first invert allei,ki that fulfill the second assertion. Af-
terwards, we invertc′l if it is equivalent to an(ei,ki )

−1. This is possible, because there is at
most one such edgee....

It is clear, thatei,ki span a graphΓ ′ ≥ Γ0, and we know from the construction that no
int c′l contains a vertex ofΓ ′. Furthermore, everycj is equivalent to a finite product ofc′l
(or its inverse). The factors used forcj (again denoted bycj,lj ) span a graphΓj , as well.

Thus, we haveπΓ0 = πΓ
′

Γ0
πΓ ′ andπ−1

cj
= π−1

Γj
(π
Γj
cj )

−1.

Finally,(π
Γj
cj )

−1(Wj ) is open inGmj by continuity, i.e., a union of sets of the typeWj,1×
· · ·×Wj,mj . Thus,πΓ0(∩Jj=1π

−1
cj
(Wj )) is the union of sets of the typeπΓ

′
Γ0
πΓ ′(∩Jj=1∩

mj
lj=1

π−1
cj,lj
(Wj,lj )).

(4) Due to the openness ofπΓ
′

Γ0
(see [6]) it is sufficient to prove the openness of

πΓ ′(∩Ll=1π
−1
cl
(Wl)) whenever the following holds:

1. Γ ′ is a graph andC′ = {cl} is a finite set of paths without self-intersections;
2. intcl ∩ V(Γ ′) = ∅;
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3. (e ↑↑ cl ⇒ e ∼ cl) ande cl for all l and for every edgee of the graphΓ ′;
4. Wl ⊆ G is open for alll.
We will prove for non-empty left-hand side

πΓ ′

(
L⋂
l=1

π−1
cl
(Wl)

)
= ×ek∈E(Γ ′)


 ⋂
cl∈C(ek)

Wl


 , (1)

whereC(ek) ⊆ C′ contains exactly thosecl ∈ C′ that are (up to the parametrization) equal
to ek. Since the right-hand side is obviously open, the openness is proven if(1) is.
“⊆” Let %g ∈ πΓ ′(∩Ll=1π

−1
cl
(Wl)), i.e., there is an̄A ∈ Ā with πek (Ā) = gk for all

k andπcl (Ā) ∈ Wl for all cl ∈ C′. From this followsgk ∈ Wl for all
cl ∈ C(ek) and so%g ∈ ×ek∈E(Γ ′)(∩cl∈C(ek)Wl).

“⊇” Let %g ∈ ×ek∈E(Γ ′)(∩cl∈C(ek)Wl). Choose anĀ0 ∈ Ā with πcl (Ā0) ∈ Wl for all
cl . By assumption everyek is independent ofC′ \ (∪k′C(ek′)) and so by
Proposition 3.10there exists an̄A ∈ Ā such that
•πek (Ā) = gk for all k,
•πcl (Ā) = πcl (Ā0) for all cl that are not equal (up to the parametrization)
to anek.
Thus, we haveπcl (Ā) ∈ Wl for all cl ∈ C(ek). Consequently,%g ∈ πΓ ′(∩Ll=1
π−1
cl
(Wl)). �

6. Induced Haar measure

In this section we will show that thanks to the directedness of the set of hyphs an induced
Haar measure can be defined with an arbitrary smoothness assumption for the paths. Our
definition covers that of Ashtekar and Lewandowski[2] for graphs in the analytic category
as well as that of Baez and Sawin[5] for webs in the smooth category.

Throughout this section,G is acompactLie group.

6.1. Cylindrical functions

In this subsection we will investigate the algebra of continuous functions onĀ. Partic-
ularly nice is the dense subalgebra of the so-called cylindrical functions[2,3]. These are
functions depending only on the parallel transports along a finite number of paths.

Definition 6.1. A functionf ∈ C(Ā) is called agenuine cylindrical functiononĀ iff there
is a graphΓ and a continuous functionfΓ ∈ C(ĀΓ ) with f = fΓ ◦ πΓ . The set of all
genuine cylindrical functions is denoted by Cyl0(Ā).

Obviously, Cyl0(Ā) is ∗-invariant. But, since for two finite graphs there need not exist a
third one containing both, the sum as well as the product of two cylindrical functions is
no longer a cylindrical function, in general. Therefore, we enlarge the definition above to
hyphs.
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Definition 6.2. A functionf ∈ C(Ā) is calledcylindrical functiononĀ iff there is a hyph
v and a continuous functionfv ∈ C(Āv) with f = fv ◦ πv. The set of all cylindrical
functions is denoted by Cyl(Ā).

Lemma 6.3. Cyl(Ā) is a normed∗-algebra containingCyl0(Ā).

Proof. Cyl(Ā) is obviously closed w.r.t. scalar multiplication and involution. It remains to
prove that it is closed w.r.t. addition and multiplication.

Letf ′ = f ′
v′ ◦πv′ andf ′′ = f ′′

v′′ ◦πv′′ . By Theorem 4.1there is a hyphv with v ≥ v′, v′′.
Thus we havef ′+f ′′ = f ′

v′ ◦πvv′ ◦πv+f ′′v′′ ◦πvv′′ ◦πv = (f ′v′ ◦πvv′ +f ′′v′′ ◦πvv′′)◦πv ∈ Cyl(Ā).
Analogously,f ′ · f ′′ ∈ Cyl(Ā). �

Proposition 6.4. Cyl(Ā) is dense inC(Ā).

Proof. The assertion follows from the Stone–Weierstraß theorem:

• 1 ∈ Cyl(Ā), whereas 1 :Ā→ C is the function 1(Ā) := 1.
• Cyl(Ā) separates the points of̄A. (We prove even Cyl0(Ā) separates the points of̄A.)

Let Ā1, Ā2 ∈ Ā with Ā1 �= Ā2. Thus, there is a graphΓ with πΓ (Ā1) �= πΓ (Ā2). Since
ĀΓ ≡ G#E(Γ ) is a manifold, hence completely regular, the continuous functions onĀΓ
separate the points of̄AΓ [9]. This means there is anfΓ ∈ C(ĀΓ ) with fΓ (πΓ (Ā1)) �=
fΓ (πΓ (Ā2)).

Due tofΓ ◦ πΓ ∈ Cyl(Ā), Cyl(Ā) separates the points of̄A. �

6.2. The induced Haar measure on̄A

According to the Riesz–Markow theorem measures on a compact Hausdorff space are
in one-to-one correspondence to linear, continuous, positive functionals on the functional
algebra over that space. We get

Proposition 6.5. For every linear, continuous, positive functional F onC(Ā) there is a
unique regular Borel measureµ on Ā, such that

F : C(Ā) → C,

f �→ ∫
Āf dµ.

Due to the denseness of Cyl(Ā) inC(Ā), it is sufficient to define an appropriate functional
on Cyl(Ā) and to extend this continuously to a functional onC(Ā). One possibility is to
replace the integration of functionsfv ◦πv overĀ by the integration offv overĀv = G#v.
But, onG#v there is a “canonical” measure, the Haar measure. Hence, we define (cf.[2]):

Definition 6.6. Letf ∈ Cyl(Ā). DefineF0(f ) := ∫Āvfv dµHaarif fv ◦πv = f , and extend

F0 continuously to a functionalF onC(Ā).

Proposition 6.7. F : C(Ā)→ C is a well-defined, linear, continuous, positive functional
onC(Ā).
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Furthermore, there is a unique Borel measureµ0 on Ā with F(f ) = ∫
Āf dµ0 for all

f ∈ C(Ā).

Definition 6.8. The measureµ0 of the preceding proposition is calledinduced Haar mea-
sureor Ashtekar–Lewandowski measureon Ā.

Proof.

• F0 is well defined.
Let f be cylindrical w.r.t.v′ andv′′. Thenf is again cylindrical w.r.t.v, if v is some

hyph containingv′ andv′′. The existence of such av is guaranteed byTheorem 4.1.
Hence, it is sufficient to prove

∫
Āv
fv dµHaar=

∫
Āv′
fv′ dµHaar for all v ≥ v′.

Let nowv ≥ v′. Then every pathe′i of v′ can be written as a product
∏
ki
e±1
j (ki ,i)

of
paths inv (and their inverses). By the moderate independence of hyphs there is a path
eK(i) for everyi, such thateK(i) occurs exactly once in the decomposition ofe′i and does
not occur in that ofe′

i′ with i′ < i. Now we have (n := #v andn′ := #v′)

∫
Āv

fv dµHaar

=
∫

Gn
fv(g1, . . . , gn)dµHaar

=
∫

Gn
fv′


∏
k1

g±1
j (k1,1)

, . . . ,
∏
kn′
g±1
j (kn′ ,n′)


∏ dµHaar

(fv = fv′ ◦ πvv′ and decomposition ofe′i )

=
∫

G
· · ·
∫

G
fv′(· · · g±1

K(1) · · · , . . . , · · · g±1
K(n′) · · · )dµHaar,1 · · ·dµHaar,n

(the dots in· · · g±1
K(l) · · · denote always a product ofg±1

j with

j �= K(l′) for all l′ > l)

=
∫

G
· · ·
∫

G
fv′(g1, . . . , gn′)dµHaar,1 · · ·dµHaar,n′

(translation and inversion invariance, normalization of the Haar measure)

=
∫
Āv′
fv′ dµHaar.

• F0 is continuous due to|F0(f )| ≤ ‖fv‖ = ‖f ‖. The last equality follows from the
surjectivity ofπv, seeProposition 3.12.

• F0 is obviously linear and positive.
• Hence,F is a well-defined, linear, continuous, positive functional onC(Ā).
• Due to the Riesz–Markow theorem there is a unique Borel measureµ0 onĀwithF(f ) =∫
Āf dµ0.

• F is strictly positive.
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Let f ∈ C(Ā), f �= 0, andk := f ∗f ∈ C(Ā). ThenU := k−1((1
2‖k‖,∞)) is open

and non-empty. Thus, there is a hyphv and an open, non-emptyUv with π−1
v (Uv) ⊆ U .

Now we use the fact that every open non-empty subset of a compact Lie group has
non-vanishing Haar measure. (In fact, letV ⊆ G be open, non-empty. Then{Vg|g ∈
G} is a covering ofG. SinceG is compact, there are only finitely manygi , such that
∪ni=1Vgi = G. Due to the translation invariance of the Haar measure we haveµ(V ) =
(1/n)

∑
µ(Vgi ) ≥ (1/n)µ(G) > 0.) Consequently, we have

F(f ∗f ) =
∫
Ā
k dµ0 ≥ 1

2

∫
U

‖k‖dµ0

≥ 1

2
‖k‖

∫
π−1
v (Uv)

1 dµ0=1

2
‖k‖

∫
Uv

1 dµHaar=1

2
‖k‖µHaar(Uv) > 0. �

7. Discussion

In this paper we investigated for some examples how the theory of generalized connections
depends on the chosen smoothness category for the paths used in the construction ofĀ. The
most important theorem yields that in every case an induced Haar measure can be defined.
But, there are some problems that depend very crucially on the smoothness of the paths. So
let us resume the discussion of the beginning of this paper: What could be a good choice of
smoothness conditions?

One decisive point is the denseness of the classical (smooth) connections in the space
Ā(r). In the case of compact structure groupsG the denseness has been proven for the
immersive smooth[5,10] and piecewise analytic category[11]. However, in the first case
[5] the spaceĀweb was defined not by lim← wĀw, but by lim← wĀw whereAw (being a Lie

subgroup ofG#w) denotes the image of the spaceA of regularconnections under the map
πw ≡ hc1 × · · · × hcW . Thus, the denseness follows immediately by the directedness of
the set of webs (cf.Appendix B). Supposed,G is in addition semi-simple, Lewandowski
and Thiemann[10] proved thatAw = Āw = G#w which implies thatA is also dense
in our Ā(∞,+). Up to now, we do not know whether this is true for arbitrary Lie groups.
However,A is definitelynotdense in the spacēA(r) for non-immersed paths. Let, e.g.,γ be
an immersed path without self-intersections andγ ′(τ ) := γ (τ2). Thenγ ′ is not equivalent
toγ (cf. [6]) and not an immersion. But, obviouslyhγ (A) = hγ ′(A) for allA ∈ A. Consider
now two elementsg, g′ ∈ G and corresponding disjoint open neighborhoodsU,U ′ ⊆ G.
We see thatv := {γ, γ ′} is a hyph and soπ−1

γ (U)∩π−1
γ ′ (U

′) = π−1
v (U×U ′) is non-empty

and open, but contains no regularA. SoA is not dense inĀ(r).
Since this is, in fact, very unsatisfactory, we should look for other possibilities for the

definition of the setP for non-immersive paths. The probably easiest way should be to
redefine the equivalence relation between paths. Why should non-self-intersecting pathsγ

andγ ′ only be equivalent if they coincide up to a piecewiseCr -transformation? Perhaps
we should use a definition of the following kind:γ ∼ γ ′ iff hA(γ ) = hA(γ

′) for all
A ∈ A— maybe at least provided imγ = im γ ′. This one is quite similar to that used
originally in [1,2]. On the one hand, we expect that all the constructions made in this
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paper and its campanion[6] will still go through. But, on the other hand, even for that
definition we do not see that it saves the desired density property in more cases than described
above.

What other questions discussed in the Ashtekar framework could be touched by the choice
of P? One area we mentioned above — the diffeomorphism invariance of quantum gravity.
Here, obviously, we have to admit at least smooth paths. Another problem is quantum
geometry. For instance, the definition of the area operator[4] enforced the usage of at
most the analytic category. There one has to calculate sums over intersection points of spin
networks with surfaces. But, since there can exist infinitely many such points when working
with smooth paths, these sums can be infinite. This problem could be solved if there would
exist for every fixed surfaceS inM a basis ofL2(Ā, µ0), such that every base element has
only finitely many intersection points withS. But this seems very unlikely.
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Appendix A. Additional results for Ā/Ḡ

In this appendix we give three corollaries about assertions that can be proven not only
for Ā, but also forĀ/Ḡ. For the definition ofĀ/Ḡ and the used notation we refer to[6].

Corollary A.1. πΓ : A/G→ A/GΓ andπΓ : Ā/Ḡ→ A/GΓ are surjective for all graphs
Γ .

Proof. Let [hΓ ] ∈ A/GΓ ≡ ĀΓ /ḠΓ . FromProposition 3.12follows the existence of an
h ∈ Ā with πΓ (h) = hΓ . Then,([πΓ ′(h)])Γ ′ ∈ A/G with πΓ (([πΓ ′(h)])Γ ′) = [πΓ (h)] =
[hΓ ]. AnalogouslyπΓ ([h]) = [hΓ ] holds for [h] := πĀ/Ḡ(h) ∈ Ā/Ḡ, whereasπĀ/Ḡ :

Ā→ Ā/Ḡ is the canonical projection. �

Corollary A.2. πΓ : Ā/Ḡ→ ĀΓ /ḠΓ ≡ A/GΓ is open for all graphsΓ .

Proof. This assertion comes from the surjectivity and the continuity ofπĀ/Ḡ, from the

openness ofπΓ : Ā→ ĀΓ andπĀΓ /ḠΓ as well as from the commutativity of the following
diagram:

. �

Every measure on a compactĀ induces a measure on̄A/Ḡ via
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Definition A.3. Letµ be a Borel measure on̄A.
DefineµḠ(U) := µ(π−1

Ā/Ḡ
(U)) for all Borel setsU on Ā/Ḡ.

Proposition A.4. µḠ is a Borel measure on̄A/Ḡ for all Borel measuresµ on Ā.

Especially, the induced Haar measure can be transferred fromĀ to Ā/Ḡ.

Appendix B. Denseness lemma for projective limits

Lemma B.1. Let A be a set,Xa be a topological space for eacha ∈ A and“≤” be a partial
ordering on A. Letπa2

a1 : Xa2 → Xa1 for all a1 ≤ a2 be a continuous and surjective map
with πa2

a1 ◦ πa3
a2 = πa3

a1 if a1 ≤ a2 ≤ a3. Furthermore, letπa : lim← a′∈AXa′ → Xa be the

usual projection on thea-component and X be some subset oflim← a∈AXa .
Then X is dense inlim← a∈AXa if

1. A is directed, i.e., for any twoa′, a′′ ∈ A there is ana ∈ A with a′, a′′ ≤ a, and
2. πa(X) is dense inXa for all a ∈ A.

Proof. Let U ⊆ lim← aXa be open and non-empty, i.e.,U ⊇ ∩iπ−1
ai
(Vi) �= ∅ with open

Vi ⊆ Xai and finitely manyai ∈ A. SinceA is directed, there is ana ∈ A with ai ≤ a for
all i and thusU ⊇ π−1

a (∩i (πaai )−1(Vi)) with non-emptyV := ∩i (πaai )−1(Vi) ⊆ Xa . V is
open becauseπaai is continuous. Sinceπa(X) is dense inXa for all a, there is anx ∈ X
with πa(x) ∈ V and soπai (x) ∈ Vi for all i, hencex ∈ U . �
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